

COURSE: : NUMERICAL METHODS						
DEGREE: DATA SCIENCE AND ENGINEERING	YEAR: 2	TERM:2				

	WEEKLY PLANNING								
WEEK	SESSION	DESCRIPTION	GROUPS (mark X)		SPECIAL ROOM FOR SESSION (Computer class room,	Indicate YES/NO If the session	WEEKLY PROGRAMMING FOR STUDENT		
			LECTURES	SEMINARS	audio-visual class room)	needs 2	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
1	1	 I- PRINCIPLES OF NUMERICAL MATHEMATICS. • Well-Posedness and Condition Number of a Problem • Stability of Numerical Methods. • Relations between Stability and Convergence. • Sources of Error in Computational Models. 	X			NO	Study Sections 2.1, 2.2 and 2.4 of QSS and Chapter 3 of DCM.	1,66	6,5

1	2	Review of the capabilities of Matlab.		X	Compu ter room	NO	Working with the computer. Appendix A of DCM.	1,66	
2	3	 Machine Representation of Numbers. The Positional System. The floating-Point Number System. Distribution of Floating-Point Number in Its Machine Representation. Machine Floating-Point Operations. 	х			NO	Study Section 2.5 of QSS and Chapter 3 of DCM.	1,66	
2	4	Taylor Series. Keeping Errors Small. The IEEE standard for floating-point representation. Roundoff error accumulation and cancellation error.		x	Compu ter room	NO	Working with the computer. Solve Numerical Examples of Chapter 3 of DCM.	1,66	6,5
3	5	 II- ROOTFINDING OF NONLINEAR EQUATIONS. Conditioning of a Nonlinear Equation. The Newton-Raphson Method. Newton's Methods for Simultaneous Nonlinear Equations. 	x			NO	Study Sections 6.1 and 6.2 of QSS. Section 5.6 of DCM.	1,66	5,5
3	6	Full implementation of Newton-Raphson Method for a nonlinear equation. Plot the trajectory to the root. Two-Dimensional Graphics. Multiple Plots in a Figure.		X	Compu ter room	NO	Working with the computer. Solve Numerical Examples of Chapter 5 of DCM and Section 8.1 of HH.	1,66	6,5
4	7	 UNCONSTRAINED OPTIMIZATION. Necessary and Sufficient conditions for Optimality. Convexity. Basis Concepts: Starting Design, Direction Vector, and Step Size. 	X			NO	Study Sections 7.2.1 and 7.2.2 of QSS and Chapter 3 of BC.	1,66	6,5

		The Steepest Descent Methods.							
4	8	Three-Dimensional Graphics .Specialized Graphs for Displaying.Data . Saving and Printing.		x	Compu ter room	NO	Working with the computer. Applying sentences of Sections 8.2, 8.3 and 8.4 of HH.	1,66	
5	9	The Conjugate Gradient Methods.Newton's Methods.	х			NO	Study Sections 7.2.4 and 7.2.5 of QSS and Chapter 3 of BC.	1,66	
5	10	Implementation of Newton, Conjugate Directions FR or PR Algorithms, pros and cons.		X	Compu ter room	NO	Working with the computer. Applying algorithms of Chapters 3 and 4 of [FJNT]	1,66	6,5
6	11	Quasi-Newton Methods. Approximate Line Search.	Х			N0	Study Sections 7.2.7 and 7.2.3 of QSS. Chapter 3 of BC.	1,66	
6	12	Implementation of Broyden Method, DFP and BFGS Algorithms, pros and cons.		X	Compu ter room	NO	Working with the computer. Applying algorithms of Chapters 3 and 5 of [FJNT].	1,66	6,5
7	13	IV- FINITE DIFFERENCE METHODS: INTERPOLATION, DIFFERENTIATON AND INTEGRATION. • Backward, Forward, and Central Differences. • Interpolating Polynomials. • The interpolation Error. • Interpolating of Equally Spaced Points	X			NO	Study Sections 8.1 and 8.2 of QSS. Sections 6.3, 6.4, 6.5 and 6.7 of DCM.	1,66	
7	14	Perform function of Gregory-Newton method for interpolation of equally spaced data.		X	Compu ter room	NO	Working with the computer. Solve Numerical Examples of Section 6.7 of DCM.	1,66	6,5
8	15	 Interpolation of Unequally Spaced Points Lagrange interpolation. 	x			NO	Study Sections 8.3 and 8.6 of QSS. Section 6.8 of DCM.	1,66	6,5

		Spline interpolation.							
8	16	Interpolation of Runge's function using cubic splines.		X	Compu ter room	NO	Working with the computer. Solve Numerical Examples of Section 8.6.1 of QSS.	1,66	
9	17	 Integration Formulas. Newton-Cotes Formulae. Richardson Extrapolation. Romberg Integration. 	X			NO	Study Sections 9.1, 9.2 and 9.6 of QSS. Sections 6.9, 6.10 of DCM.	1,66	
9	18	Implementation of Composite Trapezoidal, Closed Newton-Cotes Formula and Romberg Integration.		X	Compu ter room	NO	Working with the computer. Applying programs of Sections 9.2, 9.3, 9.4, 9.5 and 9.6 of QSS.	1,66	
10	19	V- NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS. • ODEs and Lipschitz Condition. • One Step Numerical Methods. Zero-Stability, Convergence Analysis and Absolute Stability.	X			NO	Study Sections 11.1, 11.2 and 11.3 of QSS.	1,66	6,5
10	20	Implementation of One-Step Methods.		X	Compu ter room	NO	Working with the computer. Solve Numerical Examples of Chapter 7 of DCM. Plotting stability regions.	1,66	6,5
11	21	 Multistep Methods 1- Adams Method. 2- BDF Methods. 3- Consistency. The root condition. 	x			NO	Study Sections 11.5 and 11.6 of QSS.	1,66	
11	22	Implementation of Multi-Step Methods.		X	Compu ter room	NO	Working with the computer. Solve Numerical Examples of Chapter 7 of DCM. Plotting stability regions.	1,66	6,5

12	23	4- Stability and Convergence.5- Absolute Stability.	Х				Study	1,66	
		Predictor-Corrector Methods.							
12	24	Implementation of Predictor-Corrector Scheme.		X	Compu ter room	NO	Working with the computer. Applying Matlab program of Section 11.7 of QSS.	1,66	6,5
13	25	 Runge Kutta Methods. 1- Derivation of an Explicit RK. 2- Stepsize Adaptivity for RK. 3- Implicit RK. 4- Regions of Absolute Stability 5- Systems of ODEs. 6- Stiff Problems. 	x			NO	Study Sections 11.9 and 11.10 of QSS.	1,66	0,0
13	26	Implementation of Runge-Kutta Methods.		X	Compu ter room	NO	Working with the computer. Solve Numerical Examples of Chapter 7 of DCM.	1,66	
14	27	VI- APROXIMATION THEORY. • Fourier Transform.	X			NO	Study Section 10.7, 10.8 and 10.9 of QSS.	1,66	6,5
14	28	Implementation of FFT.		X	Compu ter room	NO	Working with the computer. Applying Matlab programs of Section 10.9 of QSS.	1,66	6,5
	29	Review and tutoring.	X			NO		1,66	
							Subtotal 1	48,14	91
		Total 1 (Hours	s of class	s plus stud	lent homework	hours be	etween weeks 1-14)	139	9,14
15		Tutorials, handing in, etc				NO		2	6
	ĺ	i atonais, nanung in, etc	1	1	1	INU			

16									
17		Assessment				N0		3	
18						140			6
<u> </u>			·				Subtotal 2	5	12
Total 2 (Hours of class plus student homework hours between weeks 15-18)						1	7		

TOTAL (Total 1 + Total 2)	156.14
TOTAL (Total 1 + Total 2)	150.14

[BC] A. Belegundu and T. Chandrupatla: "Optimization Concepts and Applications in Engineering",

Cambridge University Press, Second Edition. 2011.

[DCM] S. Dunn, A. Constantinides and P. Moghe: "Numerical Methods in Biomedical Engineering", 2010.

[FJNT] P.E. Frandsen, K. Jonasson, H.B. Nielsen, O. Tingleff: "Unconstrained Optimization", IMM, DTU. 1999.

[HH] D. Higham and N. Higham: "Matlab Guide", SIAM, Second Edition. 2005.

[K] C. Kelley: "Iterative Methods for Optimization", SIAM, 1999.

[QSS] A. Quarteroni, R. Sacco and F. Saleri: "Numerical Mathematics", Springer. 2007.

[DH] P. Deuflhard and A. Hohmann: "Introduction to Scientific Computing", Second Edition, Springer. 2002.

[DB] P. Deuflhard and Bornemann: "Scientific Computing with Ordinary Differential Equations", Springer. 2001.