Universidad Carlos III de Madrid
Vicerrectorado de Estudios
Apoyo a la docencia y gestión del grado

COURSE: Discrete Mathematics

DEGREE: Data Science and Engineering	YEAR: $2^{\text {nd }}$	TERM: $1^{\text {st }}$

WEEKLY PLANNING								
	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	DESCRIPTION	TEACHING (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	WEEKLY PROGRAMMING FOR STUDENT		
W E E K			L E C T U R E S	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{M} \\ \mathrm{I} \\ \mathrm{~N} \\ \mathrm{~A} \\ \mathrm{R} \\ \mathrm{~S} \\ \hline \end{gathered}$		DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
1	1	ARITHMETIC I: Integers. Division algorithm. Largest common divisor and Euclid's algorithm. Prime numbers and Fundamental Theorem of Arithmetic.	X		NO	Personal study + classroom notes	1.66	7
1	2	Exercises		X	NO	Personal study + classroom notes	1.66	
2	3	ARITHMETIC II: Diophantine equations. Congruences and modular arithmetic.	X		NO	Personal study + classroom notes	1.66	7
2	4	Exercises		X	NO	Personal study + classroom notes	1.66	
3	5	ELEMENTARY SET THEORY I: Basic notions. Set operations and properties. Functions.	X		NO	Personal study + classroom notes	1.66	7
3	6	Exercises		x	NO	Personal study + classroom notes	1.66	
4	7	ELEMENTARY SET THEORY II: Relations of equivalence and order.	X		NO	Personal study + classroom notes	1.66	7
4	8	Exercises		X	NO	Personal study + classroom notes	1.66	7
5	9	COMBINATORICS I: Elementary counting rules. Pigeon-hole principle. Permutations and combinations.	X		NO	Personal study + classroom notes	1.66	7
5	10	Midterm exam \#1 + Exercises		X	NO	Personal study + classroom notes	1.66	
6	11	COMBINATORICS II: Binomial coefficients. Principle of inclusion and exclusion. Derangements.	X		NO	Personal study + classroom notes	1.66	7
6	12	Exercises		X	NO	Personal study + classroom notes	1.66	

WEEKLY PLANNING								
$\begin{gathered} \text { W } \\ \mathbf{E} \\ \mathbf{E} \\ \text { K } \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	DESCRIPTION	TEACHING (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	WEEKLY PROGRAMMING FOR STUDENT		
			$\begin{aligned} & \mathrm{L} \\ & \mathrm{E} \\ & \mathrm{C} \\ & \mathrm{~T} \\ & \mathrm{U} \\ & \mathrm{R} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{M} \\ \mathrm{I} \\ \mathrm{~N} \\ \mathrm{~A} \\ \mathrm{R} \\ \mathrm{~S} \\ \hline \end{gathered}$		DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
7	13	COMADINATORTES III. GEmerating functions. Partitions. Recurrences	X		NO	Personal study + classroom notes	1.66	7
7	14	Exercises		X	NO	Personal study + classroom notes	1.66	
8	15	INTRODUCTION TO GROUPS I: Law of composition. Groups and subgroups. Homomorphisms and isomorphisms.	X		NO	Personal study + classroom notes	1.66	7
8	16	Exercises		X	NO	Personal study + classroom notes	1.66	
9	17	INTRODUCTION TO GROUPS II: Cyclic groups. Cosets. Lagrange's theorem. Quotient groups.	X		NO	Personal study + classroom notes	1.66	7
9	18	Exercises		X	NO	Personal study + classroom notes	1.66	
10	19	INTRODUCTION TO GROUPS III: Applications to cryptography. FUNDAMENTALS OF GRAPH THEORY I: Definition and examples. Matrix representations.	X		NO	Personal study + classroom notes	1.66	7
10	20	Midterm exam \#2 + Exercises		X	NO	Personal study + classroom notes	1.66	
11	21	FUNDAMENTALS OF GRAPH THEORY II: Eulerian and Hamiltonian graphs.	X		NO	Personal study + classroom notes	1.66	7
11	22	Exercises		x	NO	Personal study + classroom notes	1.66	
12	23	FUNDAMENTALS OF GRAPH THEORY III: Trees. Optimisation and matching. Planar graphs.	X		NO	Personal study + classroom notes	1.66	7
12	24	Exercises		X	NO	Personal study + classroom notes	1.66	
13	25	FUNDAMENTALS OF GRAPH THEORY IV: Planar graphs. Directed graphs.	X		NO	Personal study + classroom notes	1.66	7
13	26	Exercises		X	NO	Personal study + classroom notes	1.66	
14	27	FUNDAMENTALS OF GRAPH THEORY V: Networks.	X		NO	Personal study + classroom notes	1.66	
14	28	Exercises		X	NO	Personal study + classroom notes	1.66	7
	29	Midterm exam \#3	X		NO		1.66	
						Subtotal 1	48.14	98
				-	rs of class plu	s student homework hours between weeks 1-14)		14

