Última actualización: 03/03/2025


Curso Académico: 2025/2026

Interfaces de Usuario
(20235)
Grado en Inteligencia Artificial (Plan: 555 - Estudio: 506)


Coordinador/a:

Departamento asignado a la asignatura:

Tipo: Optativa
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Resultados del proceso de formación y aprendizaje
K6: Determinar los principios fundamentales y modelos de computación, los fundamentos teóricos de lenguajes de programación y técnicas de procesamiento léxico, sintáctico y semántico asociadas, las estrategias algorítmicas y los paradigmas y técnicas propias de los sistemas inteligentes y del aprendizaje computacional necesarios para la resolución de problemas en cualquier ámbito de aplicación, como son computación, percepción y actuación en ambientes o entornos inteligentes, adquisición formalización y representación del conocimiento humano, sistemas interactivos y de presentación de información compleja, interacción persona-computador, entornos de aprendizaje computacional y de extracción automática de información o conocimiento a partir de grandes volúmenes de datos S4: Aplicar técnicas de extracción de información de datos estructurados, semi estructurados o no estructurados, incluyendo texto, imagen, vídeo y audio, mediante técnicas de identificación y adquisición de datos relevantes, reducción, compresión, integración, transformación, limpieza y evaluación de su calidad, incluyendo interfaces persona-computador que visualicen estos datos de una manera efectiva y centrada en el usuario C4: Diseñar interfaces persona-ordenador para sistemas inteligentes de acuerdo con los principios de calidad, fiabilidad, legislación y normativas vigentes y a los principios de diseño universal e inclusivo C6: Liderar proyectos de inteligencia artificial participando en el diseño, planificación, despliegue y dirección de estos, así como en la definición de condiciones técnicas de acuerdo con los principios de calidad, fiabilidad, legislación y normativas vigentes y a los principios éticos y la deontología de la inteligencia artificial C8: Diseñar soluciones que deriven conocimiento nuevo realizando inferencia o por medio de métodos de minería de datos o aprendizaje automático con metodologías robustas de aprendizaje y validación en problemas que involucren cualquier tipo de tratamiento de grandes volúmenes de datos
Descripción de contenidos: Programa
1. Introducción al HCI ¿Qué es el HCI? ¿Por qué se necesita? ¿Cuál es su relación con el diseño de interfaces? Historia del HCI lgunos ejemplos de la vida cotidiana 2. Las Interfaces de Usuario ¿Qué es una interfaz de usuario y de qué sirve? Diseño centrado en el usuario: Usabilidad; Principios, Lineas Guías, Heurísticas y Patrones; Metodología de diseño; Prototipado Diseño para todos (Universal Design) 3. Las Interfaces de Usuario Web ¿Qué es la Web? Historia y Evolución de la WWW Estructura y navegación de un sitio web Principios de diseño Web, Heurísticas y Patrones 4. La Interacción con las Interfaces de Usuario Diseño de la experiencia de usuario (UX) Diseño de la interacción con páginas web (agile, flat, responsive,...) ¿Modelos predictivos: Ley de Fitt; Ley de Sterring Modelos descriptivos: KLM; GOMS Métodos de Inspección Paradigmas de Interacción: Large Scale Computing; Personal Computing; Mobile Computing; Ubiquitous Computing; Network Computing; Reality Computing (Augmented Reality y Virtual Reality)
Actividades formativas, metodología a utilizar y régimen de tutorías
A1: LECCIÓN MAGISTRAL. Lección de carácter teórico impartidas por el profesor en el aula ordinaria. Puede utilizar diferentes tecnologías de apoyo en su actividad expositiva como son presentaciones, vídeos, etc. y realizar actividades formativas de análisis, reflexión, debates de la información proporcionada, etc. 100% de presencialidad / A2: RESOLUCIÓN DE PROBLEMAS Y ESTUDIO DE CASOS EN AULA ORDINARIA. Actividad de carácter práctico (problemas guiados, tutoriales o trabajos en grupo) en aula ordinaria. Puede utilizar diferentes tecnologías de apoyo en su actividad expositiva como son presentaciones, vídeos, etc. y realizar actividades formativas de análisis, reflexión, debates de la información proporcionada, etc pero que no requiere de una infraestructura específica. 100% de presencialidad / A2bis: RESOLUCIÓN DE PROBLEMAS EN ENTORNO INFORMÁTICO: Actividad de carácter similar a la A2 pero se realiza en un entorno informático con hardware y software específico. 100% de presencialidad / A3: TRABAJO INDIVIDUAL DEL ESTUDIANTE: Es el trabajo individual del estudiante fuera del aula ¿presencial¿ y consiste en el estudio autónomo, resolución de ejercicios y problemas, trabajo individual, etc. 0% de presencialidad / A4: SESIONES DE LABORATORIOS. Actividades prácticas que los estudiantes llevan a cabo en un entorno de laboratorio, utilizando los recursos específicos necesarios y bajo la supervisión y control del profesor. En estas sesiones el número máximo de alumnos por Grupo es de 20 estudiantes. 100% de presencialidad / A5: EXAMEN FINAL Consiste en una prueba objetiva cuya finalidad es la verificación de la adquisición de los conocimientos, habilidades y destrezas de la asignatura. 100% de presencialidad M1: SEMINARIOS Y LECCIONES MAGISTRALES CON APOYO DE MEDIOS INFORMÁTICOS Y AUDIOVISUALES. / M2: APRENDIZAJE PRÁCTICO BASADO EN CASOS Y PROBLEMAS Y RESOLUCIÓN DE EJERCICIOS. / M3: TRABAJO INDIVIDUAL Y EN GRUPO O COOPERATIVO CON OPCIÓN A PRESENTACIÓN ORAL O ESCRITA. / M4: TUTORÍAS INDIVIDUALES Y EN GRUPO PARA RESOLUCIÓN DE DUDAS Y CONSULTAS SOBRE LA MATERIA.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40




Convocatoria extraordinaria: normativa

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.