Última actualización: 09/05/2025 14:44:21


Curso Académico: 2025/2026

Inteligencia Artificial
(20189)
Grado en Inteligencia Artificial (Plan: 555 - Estudio: 506)


Coordinador/a: FUENTETAJA PIZAN, RAQUEL

Departamento asignado a la asignatura: Departamento de Informática

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Objetivos
En esta asignatura se verán los fundamentos de las técnicas de Inteligencia Artificial desde el punto de vista conceptual y desde el punto de vista práctico.
Resultados del proceso de formación y aprendizaje
K5: Determinar las técnicas más adecuadas para la resolución de problemas, incluyendo modelos de razonamiento en entornos centralizados y distribuidos, aprendizaje automático, percepción y robótica cognitiva, entidades y sistemas inteligentes que permitan la adquisición y representación del conocimiento, la transformación de los datos en conocimiento y la manipulación del entorno, para la resolución de problemas que requieran el uso de infraestructuras, entornos y técnicas de la inteligencia artificial usando de manera socialmente responsable y de acuerdo a los aspectos éticos, legales y normativos propios de la inteligencia artificial K6: Determinar los principios fundamentales y modelos de computación, los fundamentos teóricos de lenguajes de programación y técnicas de procesamiento léxico, sintáctico y semántico asociadas, las estrategias algorítmicas y los paradigmas y técnicas propias de los sistemas inteligentes y del aprendizaje computacional necesarios para la resolución de problemas en cualquier ámbito de aplicación, como son computación, percepción y actuación en ambientes o entornos inteligentes, adquisición formalización y representación del conocimiento humano, sistemas interactivos y de presentación de información compleja, interacción persona-computador, entornos de aprendizaje computacional y de extracción automática de información o conocimiento a partir de grandes volúmenes de datos K7: Demostrar conocimiento de la normativa y regulación de la inteligencia artificial en ámbitos nacional, europeo e internacional para la resolución de los problemas de inteligencia artificial relacionados con la empresa de acuerdo con los principios, estándares y normativas vigentes S4: Aplicar técnicas de extracción de información de datos estructurados, semi estructurados o no estructurados, incluyendo texto, imagen, vídeo y audio, mediante técnicas de identificación y adquisición de datos relevantes, reducción, compresión, integración, transformación, limpieza y evaluación de su calidad, incluyendo interfaces persona-computador que visualicen estos datos de una manera efectiva y centrada en el usuario S9: Desarrollar sistemas basados en conocimiento orientados a la resolución de problemas y toma de decisiones que requieran conducta inteligente, en problemas de clasificación supervisada y no supervisada, de búsqueda de relaciones de independencia condicional entre variables relacionadas, o que puedan percibir su entorno para la manipulación, navegación y planificación de su comportamiento, con cierto grado de autonomía
Descripción de contenidos: Programa
· Introducción a la Inteligencia artificial · Sistemas de producción · Búsqueda · Razonamiento bajo incertidumbre · Áreas de aplicación
Actividades formativas, metodología a utilizar y régimen de tutorías
AF1: CLASES TEÓRICO-PRÁCTICAS. En ellas se presentarán los conocimientos que deben adquirir los alumnos. Estos recibirán las notas de clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior. Se resolverán ejercicios, prácticas problemas por parte del alumno y se realizarán talleres y prueba de evaluación para adquirir las capacidades necesarias. AF2:  Actualizado a alegación AF3: TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. AF9: EXAMEN FINAL. En el que se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. MD1: CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos. MD2: PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo. MD3: TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. MD6: PRÁCTICAS DE LABORATORIO. Docencia aplicada/experimental a talleres y laboratorios bajo la supervisión de un tutor.
Sistema de evaluación
  • Peso porcentual del Examen/Prueba Final 40
  • Peso porcentual del resto de la evaluación 60

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • S. Russell, P. Norving. Artificial intelligence: A modern approach. Prentice Hall.

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.