Última actualización: 18/05/2022


Curso Académico: 2022/2023

Inferencia Causal para las Ciencias Sociales
(19148)
Titulación: M.U Ciencias Sociales Computacionales (375)
Escuela de Economía y Ciencia Política


Coordinador/a: LAHDELMA , ILONA ERZSÉBET

Departamento asignado a la asignatura: Departamento de Ciencias Sociales

Tipo: Obligatoria
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Estadística y Ciencia de Datos I (19140) Estadística y Ciencia de Datos II (19141)
Objetivos
Competencias Básicas: - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación. - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio. - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios. - Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades. - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo. Competencias Generales: - Capacidad de recopilar y analizar los conocimientos existentes en las diferentes áreas de las ciencias sociales computacionales y de hacer una propuesta de posibles soluciones a los problemas planteados. - Capacidad para aplicar los conocimientos teóricos y metodológicos propios de las ciencias sociales computacionales al análisis y resolución de casos y problemas empíricos concretos. - Capacidad de comunicar y presentar, de forma clara, precisa y rigurosa, conceptos y resultados relacionados con actividades en ciencias sociales computacionales ante públicos tanto especializados como no especializados. Competencias Específicas: - Capacidad de comprender y utilizar con nivel avanzado los principales métodos y técnicas de análisis estadísticos propios de las ciencias sociales computacionales. Resultados del Aprendizaje: - Conocimiento de los métodos y técnicas de análisis propios de las ciencias sociales computacionales. - Capacidad de realizar e interpretar contrastes de hipótesis usando datos y las herramientas más apropiadas. - Capacidad de aplicar tests de robustez a las estimaciones de modelos de regresión. - Capacidad de describir la lógica de la inferencia causal y su aplicación a modelos de regresión, distinguiendo entre causalidad y correlación. - Capacidad de identificar problemas comunes de interpretación causal en modelos lineales, así como de evaluar y justificar técnicas para solventarlos. - Capacidad de evaluar la validez y robustez de la inferencia causal ante una variedad de asunciones sobre la generación de los datos.
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. ¿Por qué la causalidad? Introducción al marco de salidas potenciales 2. La comparación experimental 3. Datos observacionales y comparación experimental: matching 4. Quasi-experimentos: Diseños de regresión discontinua 5. Quasi-experimentos: Variables instrumentales 6. Diferencias en diferencias y datos de panel 7. Inferencia causal aplicada: Evaluación de políticas
Actividades formativas, metodología a utilizar y régimen de tutorías
Actividades Formativas: - Clases teórico-prácticas - Trabajo en grupo - Trabajo individual del estudiante Metodologías Docentes: - Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporciona la bibliografía para complementar el aprendizaje de los alumnos. - Lectura crítica de textos recomendados por el profesor de la asignatura: Artículos de prensa, informes, manuales y/o artículos académicos, bien para su posterior discusión en clase, bien para ampliar y consolidar los conocimientos de la asignatura. - Resolución de casos prácticos, problemas, etc., planteados por el profesor de manera individual o en grupo - Exposición y discusión en clase, bajo la moderación del profesor de temas relacionados con el contenido de la materia, así como de casos prácticos. - Elaboración de trabajos e informes de manera individual o en grupo.
Sistema de evaluación
  • Peso porcentual del Examen Final 0
  • Peso porcentual del resto de la evaluación 100
Bibliografía básica
  • Angrist, J. D., Jorn-Steffen Pischke. Mostlt Harmless Econometrics. Princeton University Press. 2009
  • Guido W. Imbens, Donald B. Rubin. Causal inference for Statistics, Social, and Biomedical Sciences: An introduction . Cambridge University Press. 2015
  • Nick Huntington-Klein. The Effect: An introduction to Research Design and Causality. Chapman and Hall. 2021
Recursos electrónicosRecursos Electrónicos *
Bibliografía complementaria
  • Judea Pearl, Dana MacKenzie. The Book of Why. Penguin Random House. 2019
  • Scott Cunningham. The Causal Inference Mixtape. Yale University Press. 2021
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.