Última actualización: 18/05/2022


Curso Académico: 2022/2023

Estadística y Ciencia de Datos I
(19140)
Titulación: M.U Ciencias Sociales Computacionales (375)
Escuela de Economía y Ciencia Política


Coordinador/a: KAISER REMIRO, REGINA

Departamento asignado a la asignatura: Departamento de Estadística

Tipo: Obligatoria
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Introducción a la Programación con R (19151) Estadística Básica (19152)
Objetivos
Competencias Básicas: - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación. - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio. - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios. - Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades. - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo. Competencias Generales: - Capacidad para identificar, definir y formular problemas de las ciencias sociales y resolverlos mediante técnicas computacionales. Esta capacidad incluye la valoración simultánea de todos los factores en juego, no sólo técnicos, sino también legales. - Capacidad para aplicar los conocimientos teóricos y metodológicos propios de las ciencias sociales computacionales al análisis y resolución de casos y problemas empíricos concretos. - Capacidad para abordar de manera proactiva los problemas planteados bajo entornos nuevos o poco conocidos, dentro del contexto de las ciencias sociales computacionales. - Capacidad para planificar y llevar a cabo de manera autónoma una investigación en el campo de las ciencias sociales computacionales. Competencias Específicas: - Capacidad de comprender y utilizar con nivel avanzado los principales métodos y técnicas de análisis estadísticos propios de las ciencias sociales computacionales. Resultados del Aprendizaje: - Capacidad de realizar e interpretar contrastes de hipótesis usando datos y las herramientas más apropiadas. - Capacidad de estimar modelos de regresión lineal para datos transversales, así como de entender y explicar los principios estadísticos subyacentes a las estimaciones. - Capacidad de interpretar los parámetros de una regresión lineal, obtener predicciones y evaluar la bondad del ajuste. - Capacidad de describir la lógica de la inferencia causal y su aplicación a modelos de regresión, distinguiendo entre causalidad y correlación. - Capacidad de identificar problemas comunes de interpretación causal en modelos lineales, así como de evaluar y justificar técnicas para solventarlos. - Capacidad de evaluar la validez y robustez de la inferencia causal ante una variedad de asunciones sobre la generación de los datos.
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Estimación paramétrica y no paramétrica 2. Inferencia avanzada 3. Introducción a la modelización avanzada 4. Ejemplos prácticos
Actividades formativas, metodología a utilizar y régimen de tutorías
Actividades Formativas: - Clases teórico-prácticas - Tutorías - Trabajo en grupo - Trabajo individual del estudiante - Exámenes parciales y finales Metodologías Docentes: - Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporciona la bibliografía para complementar el aprendizaje de los alumnos. - Resolución de casos prácticos, problemas, etc., planteados por el profesor de manera individual o en grupo.
Sistema de evaluación
  • Peso porcentual del Examen Final 50
  • Peso porcentual del resto de la evaluación 50
Bibliografía básica
  • Agresti, Alan. . Statistical Methods for the Social Sciences, Global Edition.. Pearson International Content.. 2018
  • Fogarty, Brian J. . Quantitative Social Science Data with R.. SAGE publications. 2018
  • Privitera, Gregory J.. Essential Statistics for the Behavioral Sciences.. SAGE Publications. 2017

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.