Última actualización: 22/04/2024


Curso Académico: 2024/2025

Sensores y técnicas de medida avanzados
(18327)
Doble Grado en Ingeniería Física e Ingeniería en Tecnologías Industriales (Plan: 455 - Estudio: 370)


Coordinador/a: ACEDO GALLARDO, PABLO

Departamento asignado a la asignatura: Departamento de Tecnología Electrónica

Tipo: Obligatoria
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Electromagnetismo y Óptica. Fundamentos de Estado Sólido para Ingeniería Fundamentos de Ingeniería Electrónica Física Estadística Instrumentación y Medida Fotónica
Objetivos
Conocer los fundamentos detrás de diversos sensores avanzados de relevancia en aplicaciones científicas e industriales como son los MEMS, MOEMS, sistemas microfluidicos y sensores químicos, así como las últimas novedades en nuevos materiales y procesos de fabricación para sensores, así como su campo de aplicación en sistemas de instrumentación y medida en entornos biomédicos y biológicos. Conocer diversos instrumentos y técnicas experimentales de uso general en investigación (microscopía y espectroscopía entre otros) y los instrumentos científicos más relevantes.
Competencias y resultados del aprendizaje
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. CG2. Aprender nuevos métodos y tecnologías a partir de conocimientos básicos científicos y técnicos, y tener versatilidad para adaptarse a nuevas situaciones. CG3. Resolver problemas con iniciativa, toma de decisiones, creatividad, y comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética, social y profesional de la actividad de ingeniero. Capacidad de liderazgo, innovación y espíritu emprendedor. CG4. Resolver problemas matemáticos, físicos, químicos, biológicos y tecnológicos que puedan plantearse en el marco de las aplicaciones de las tecnologías cuánticas, la nanotecnología, la biología, la micro- y nano-electrónica y la fotónica en diversos campos de la ingeniería. CG5. Utilizar los conocimientos teóricos y prácticos adquiridos en la definición, planteamiento y resolución de problemas en el marco del ejercicio de su profesión. CG6. Desarrollar nuevos productos y servicios basados en el uso y la explotación de las nuevas tecnologías relacionadas con la ingeniería física. CG7. Abordar posteriores estudios especializados, tanto en física como en las diversas ramas de la ingeniería. CE14. Especificar y utilizar instrumentación electrónica, sistemas de medida, sensores, técnicas y procedimientos experimentales habituales y avanzados en el ámbito de la física, la ingeniería y la biología, incluyendo microdispositivos electromecánicos y microfluídicos, y diseñar experimentos utilizando el método científico. CT1. Trabajar en equipos de carácter multidisciplinar e internacional así como organizar y planificar el trabajo tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios y pensamiento crítico dentro del área de estudio. RA1. Haber adquirido conocimientos y demostrado una comprensión profunda de los principios básicos, tanto teóricos como prácticos, así como de la metodología de trabajo en los campos de las ciencias y la tecnología, con profundidad suficiente como para poder desenvolverse con soltura en los mismos. RA2. Poder, mediante argumentos, estrategias o procedimientos desarrollados por ellos mismos, aplicar sus conocimientos y capacidades a la resolución de problemas tecnológicos complejos que requieran del uso de ideas creativas e innovadoras. RA3. Tener la capacidad de buscar, recopilar e interpretar datos e informaciones relevantes sobre las que poder fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio. RA4. Ser capaces de desenvolverse en situaciones complejas o que requieran el desarrollo de nuevas soluciones tanto en el ámbito académico como laboral o profesional dentro de su campo de estudio. RA6. Ser capaces de identificar sus propias carencias y necesidades formativas en su campo de especialidad y entorno laboral-profesional y de planificar y organizar su propio aprendizaje con un alto grado de autonomía en cualquier situación.
Descripción de contenidos: Programa
1.- Introducción. Revisión de conceptos metrólogicos y el SI. 2.- Aspectos técnicos de los sensores electrónicos. 3.- Microsistemas: MEMS y MOEMS 4.- Sistemas y sensores microfluídicos. Funcionalización. 5.- Sensores químicos. 6.- Espectroscopia y técnicas espectroscópicas. 7.- Instrumentos Científicos.
Actividades formativas, metodología a utilizar y régimen de tutorías
AF1. CLASES TEÓRICO-PRÁCTICAS. AF3. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. AF8. TALLERES Y LABORATORIOS. AF9. EXAMEN FINAL. MD1. CLASE TEORÍA. MD2. PRÁCTICAS.
Sistema de evaluación
  • Peso porcentual del Examen Final 50
  • Peso porcentual del resto de la evaluación 50

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • Liu C. . Foundations of MEMS. Second Edition. Prentice Hall . 2012
Bibliografía complementaria
  • Kaajakari V. . Practical MEMS. Small Gear Publising . 2009
  • Tkachenko N.V. . Optical Spectroscopy. Methods and Instrumentations. Elsevier. 2006

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.