CB1. Students have demonstrated knowledge and understanding in a field of study that builds upon their general secondary education, and is typically at a level that, whilst supported by advanced textbooks, includes some aspects that will be informed by knowledge of the forefront of their field of study
CB2. Students can apply their knowledge and understanding in a manner that indicates a professional approach to their work or vocation, and have competences typically demonstrated through devising and sustaining arguments and solving problems within their field of study
CB3. Students have the ability to gather and interpret relevant data (usually within their field of study) to inform judgments that include reflection on relevant social, scientific or ethical issues
CB4. Students can communicate information, ideas, problems and solutions to both specialist and non-specialist audiences
CB5. Students have developed those learning skills that are necessary for them to continue to undertake further study with a high degree of autonomy
CG1. Analyze and synthesize basic problems related to physics and engineering, solve them and communicate them efficiently.
CG2. Learn new methods and technologies from basic scientific and technical knowledge, and being able to adapt to new situations.
CG3. Solve problems with initiative, decision making, creativity, and communicate and transmit knowledge, skills and abilities, understanding the ethical, social and professional responsibility of the engineering activity. Capacity for leadership, innovation and entrepreneurial spirit.
CG5. Use the theoretical and practical knowledge acquired in the definition, approach and resolution of problems in the framework of the exercise of their profession.
CE5. Understand and handle the basic concepts of the general laws of mechanics, thermodynamics, fields and waves and electromagnetism and apply them to the resolution of engineering problems.
CE20. Understand and address the general problems of the field of Energy, as well as the scientific and technological foundations of its generation, conversion, transport and storage.
CT1. Work in multidisciplinary and international teams as well as organize and plan work making the right decisions based on available information, gathering and interpreting relevant data to make judgments and critical thinking within the area of study.
RA1. To have acquired sufficient knowledge and proved a sufficiently deep comprehension of the basic principles, both theoretical and practical, and methodology of the more important fields in science and technology as to be able to work successfully in them;
RA2. To be able, using arguments, strategies and procedures developed by themselves, to apply their knowledge and abilities to the successful solution of complex technological problems that require creating and innovative thinking;
RA3. To be able to search for, collect and interpret relevant information and data to back up their conclusions including, whenever needed, the consideration of any social, scientific and ethical aspects relevant in their field of study;
RA6. To be aware of their own shortcomings and formative needs in their field of specialty, and to be able to plan and organize their own training with a high degree of independence.