Última actualización: 14/05/2024


Curso Académico: 2024/2025

Transporte y distribución de energía
(18358)
Grado en Ingeniería Física (Plan: 434 - Estudio: 363)


Coordinador/a: LEDESMA LARREA, PABLO

Departamento asignado a la asignatura: Departamento de Ingeniería Eléctrica

Tipo: Optativa
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Solución de circuitos de corriente alterna mediante fasores (Por ejemplo Fundamentos de Ingeniería Eléctrica en la UC3M)
Objetivos
Al terminar con éxito esta materia, los estudiantes serán capaces de: 1. Conocer y comprender los principios científicos y matemáticos que subyacen al análisis de sistemas eléctricos 2. Comprender los conceptos y aspectos clave de la operación de sistemas eléctricos 3. Aplicar su conocimiento y comprensión para identificar, formular y resolver problemas de cálculo y operación de sistemas eléctricos utilizando métodos establecidos. 4. Aplicar sus conocimientos para desarrollar y llevar a cabo diseños de sistemas eléctricos que cumplan unos requisitos específicos 5. Demostrar competencias técnicas en la aplicación de herramientas informáticas de análisis de sistemas eléctricos 6. Combinar la teoría y la práctica para resolver problemas de sistemas eléctricos
Competencias y resultados del aprendizaje
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. CG2. Aprender nuevos métodos y tecnologías a partir de conocimientos básicos científicos y técnicos, y tener versatilidad para adaptarse a nuevas situaciones. CG3. Resolver problemas con iniciativa, toma de decisiones, creatividad, y comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética, social y profesional de la actividad de ingeniero. Capacidad de liderazgo, innovación y espíritu emprendedor. CG4. Resolver problemas matemáticos, físicos, químicos, biológicos y tecnológicos que puedan plantearse en el marco de las aplicaciones de las tecnologías cuánticas, la nanotecnología, la biología, la micro- y nano-electrónica y la fotónica en diversos campos de la ingeniería. CG5. Utilizar los conocimientos teóricos y prácticos adquiridos en la definición, planteamiento y resolución de problemas en el marco del ejercicio de su profesión. CG6. Desarrollar nuevos productos y servicios basados en el uso y la explotación de las nuevas tecnologías relacionadas con la ingeniería física. CG7. Abordar posteriores estudios especializados, tanto en física como en las diversas ramas de la ingeniería. CE6. Resolver problemas de termodinámica aplicada, transmisión de calor y mecánica de fluidos en el ámbito de la ingeniería. CE20. Comprender y abordar la problemática general del campo de la Energía, así como los fundamentos científicos y tecnológicos de su generación, conversión, transporte y almacenamiento. CT1. Trabajar en equipos de carácter multidisciplinar e internacional así como organizar y planificar el trabajo tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios y pensamiento crítico dentro del área de estudio. RA1. Haber adquirido conocimientos y demostrado una comprensión profunda de los principios básicos, tanto teóricos como prácticos, así como de la metodología de trabajo en los campos de las ciencias y la tecnología, con profundidad suficiente como para poder desenvolverse con soltura en los mismos. RA2. Poder, mediante argumentos, estrategias o procedimientos desarrollados por ellos mismos, aplicar sus conocimientos y capacidades a la resolución de problemas tecnológicos complejos que requieran del uso de ideas creativas e innovadoras. RA3. Tener la capacidad de buscar, recopilar e interpretar datos e informaciones relevantes sobre las que poder fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio. RA4. Ser capaces de desenvolverse en situaciones complejas o que requieran el desarrollo de nuevas soluciones tanto en el ámbito académico como laboral o profesional dentro de su campo de estudio. RA6. Ser capaces de identificar sus propias carencias y necesidades formativas en su campo de especialidad y entorno laboral-profesional y de planificar y organizar su propio aprendizaje con un alto grado de autonomía en cualquier situación.
Descripción de contenidos: Programa
Redes de transporte y de distribución Tensiones de transporte Redes malladas y radiales Calidad de suministro Modelos matemáticos básicos de líneas, transformadores, cargas y generadores Cálculos en por unidad Líneas eléctricas Modelos matemáticos de línea Flujos de potencia y tensiones en una línea Conductores Aisladores Apoyos Efecto corona Flujo de cargas Ecuaciones del flujo de cargas Método de Newton-Raphson Métodos de Newton-Raphson modificados Control de tensión Bobinas y condensadores en paralelo Control automático de tensión en plantas de generación Transformadores con cambio de tomas Efecto Ferranti Control de tensión en una red de transporte Control de tensión en una red de distribución Subestaciones Seccionadores Interruptores automáticos Configuración de subestaciones Control de frecuencia Regulación primaria Regulación secundaria Regulación terciaria Control de tiempo Sistemas de protección Análisis de contingencias Características de un sistema de protección Corriente de cortocircuito Tiempo de despeje de falta y estabilidad transitoria Tecnologías emergentes en sistemas eléctricos Gestión de demanda Vehículos eléctricos Medidores inteligentes Redes inteligentes
Actividades formativas, metodología a utilizar y régimen de tutorías
La mitad de las sesiones son prácticas en aula informática, la mayoría con el software PSSE. PSSE es la herramienta usada por el operador del sistema en España y por muchas compañías eléctricas para representar el sistema eléctrico. Además: Clases teóricas Solución de problemas prácticos en clase Tutorías individuales
Sistema de evaluación
  • Peso porcentual del Examen Final 0
  • Peso porcentual del resto de la evaluación 100

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • Grainger, Stevenson. Power System Analysis. McGraw-Hill.
  • P. Kundur. Power System Stability and Control. EPRI.
  • Pieter Schavemaker; Lou van der Sluis. Electrical Power System Essentials. John Wiley & Sons. 2008
Recursos electrónicosRecursos Electrónicos *
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.