Última actualización: 12/02/2024


Curso Académico: 2024/2025

Robótica Industrial
(18349)
Grado en Ingeniería Física (Plan: 434 - Estudio: 363)


Coordinador/a: GONZALEZ VICTORES, JUAN CARLOS

Departamento asignado a la asignatura: Departamento de Ingeniería de Sistemas y Automática

Tipo: Optativa
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Álgebra lineal Programación (C ,FORTRAN, BASIC) Ingeniería de Control Sistemas Informáticos en Tiempo Real
Objetivos
Al terminar con éxito esta asignatura, los estudiantes serán capaces de: 1. Tener conocimiento y comprensión de los fundamentos de la robótica industrial y los métodos de control. 2. Tener capacidad de aplicar su conocimiento y comprensión para identificar, formular y resolver problemas relacionados con la robótica industrial utilizando métodos establecidos. 3. Tener la capacidad de aplicar su conocimiento para desarrollar y llevar a cabo diseño de aplicaciones en robótica industrial que cumplan unos requisitos específicos. 4. Tener capacidad de comprender las diferentes metodologías y su aplicación en robótica industrial. 5. Tener competencias técnicas y de laboratorio. 6. Seleccionar y utilizar equipos, herramientas y métodos adecuados. 7. Combinar la teoría y la práctica para resolver problemas de robótica industrial. 8. Tener comprensión de los métodos y técnicas aplicables en el ámbito de la robótica industrial y sus limitaciones.
Competencias y resultados del aprendizaje
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. CG2. Aprender nuevos métodos y tecnologías a partir de conocimientos básicos científicos y técnicos, y tener versatilidad para adaptarse a nuevas situaciones. CG3. Resolver problemas con iniciativa, toma de decisiones, creatividad, y comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética, social y profesional de la actividad de ingeniero. Capacidad de liderazgo, innovación y espíritu emprendedor. CG4. Resolver problemas matemáticos, físicos, químicos, biológicos y tecnológicos que puedan plantearse en el marco de las aplicaciones de las tecnologías cuánticas, la nanotecnología, la biología, la micro- y nano-electrónica y la fotónica en diversos campos de la ingeniería. CG5. Utilizar los conocimientos teóricos y prácticos adquiridos en la definición, planteamiento y resolución de problemas en el marco del ejercicio de su profesión. CG6. Desarrollar nuevos productos y servicios basados en el uso y la explotación de las nuevas tecnologías relacionadas con la ingeniería física. CG7. Abordar posteriores estudios especializados, tanto en física como en las diversas ramas de la ingeniería. CE14. Especificar y utilizar instrumentación electrónica, sistemas de medida, sensores, técnicas y procedimientos experimentales habituales y avanzados en el ámbito de la física, la ingeniería y la biología, incluyendo microdispositivos electromecánicos y microfluídicos, y diseñar experimentos utilizando el método científico. CT1. Trabajar en equipos de carácter multidisciplinar e internacional así como organizar y planificar el trabajo tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios y pensamiento crítico dentro del área de estudio. RA1. Haber adquirido conocimientos y demostrado una comprensión profunda de los principios básicos, tanto teóricos como prácticos, así como de la metodología de trabajo en los campos de las ciencias y la tecnología, con profundidad suficiente como para poder desenvolverse con soltura en los mismos. RA2. Poder, mediante argumentos, estrategias o procedimientos desarrollados por ellos mismos, aplicar sus conocimientos y capacidades a la resolución de problemas tecnológicos complejos que requieran del uso de ideas creativas e innovadoras. RA3. Tener la capacidad de buscar, recopilar e interpretar datos e informaciones relevantes sobre las que poder fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio. RA4. Ser capaces de desenvolverse en situaciones complejas o que requieran el desarrollo de nuevas soluciones tanto en el ámbito académico como laboral o profesional dentro de su campo de estudio. RA6. Ser capaces de identificar sus propias carencias y necesidades formativas en su campo de especialidad y entorno laboral-profesional y de planificar y organizar su propio aprendizaje con un alto grado de autonomía en cualquier situación.
Descripción de contenidos: Programa
1. Introducción 1.1 Definiciones 1.2 Evolución histórica 1.3 Mercado de Robots Industriales 1.4 Estadísticas tendencias 2. Morfología 2.1 Estructuras y configuraciones básicas 2.2 Sub-sistemas mecánico 2.3 Sub-sistemas de accionamiento y transmisiones 2.4 Sensores 2.5 Elementos terminales 3. Estructura del sistema de control 3.1 Arquitecturas de control 3.2 Interfaces hombre-maquina y comunicaciones 4. Aplicaciones Robotizadas 4.1 Clasificación 4.2 Casos prácticos 5. Análisis y control Cinemático 5.1 Herramientas Matemáticas 5.2 Modelos cinemáticos 5.3 Resolución de los problemas cinemático directo e inverso 5.3 Modelo diferencial 5.4 Cálculo y generación de trayectorias 5.6 Control cinemático 6. Análisis y control dinámico 6.1 Planteamiento del problema 6.2 Formulación Euler-Lagrange 6.3 Problemas de dinámica directa e inversa 6.4 Control cinemático 7. Programación de robots 7.1 Clasificación y métodos de programación 7.2 Lenguajes comerciales para robots 7.3 Sistemas de coordenadas y referencias espaciales 7.4 Conceptos avanzados de programación en RAPID (ABB) 8. Criterios de implantación de instalaciones industriales 8.1 Aspectos de diseño de células de fabricación flexible robotizadas y tendencias 8.2 Seguridad en instalaciones industriales 8.3 Introducción a los robots colaborativos
Actividades formativas, metodología a utilizar y régimen de tutorías
- Clases magistrales, clases de resolución de dudas en grupos reducidos, tutorías individuales y trabajo personal del alumno; orientados a la adquisición de conocimientos teóricos (3 créditos ECTS). - Prácticas de laboratorio y clases de problemas en grupos reducidos, tutorías individuales y trabajo personal del alumno, especialmente mediante trabajo final de simulación/programación de célula robotizada; orientados a la adquisición de habilidades prácticas relacionadas con el programa de la asignatura (3 créditos ECTS). Se realizarán prácticas: 1. Introducción a los manipuladores y controladores de robots industriales de ABB. 2. Programación de robots por demostración y mediante RAPID. 3. Programación de robots mediante simulación. 4. Programación de robots de un sistema de fabricación flexible sencillo mediante simulación.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • A. Barrientos, L.F. Peñin, C. balaguer, R. Aracil. Fundamentos de Robotica (2ª edicion). McGraw Hill.
Bibliografía complementaria
  • Craig, John J.. Introduction to robotics : mechanics and control . Pearson Education. 2014
  • Paul, Richard P. Robot manipulators, mathematics, programming, and control: the computer control of robot manipulators. MIT Press. 1981
Recursos electrónicosRecursos Electrónicos *
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.