Checking date: 16/05/2019

Course: 2019/2020

Electromagnetism and Optics
Study: Bachelor in Engineering Physics (363)

Coordinating teacher: LEGUEY GALAN, TERESA

Department assigned to the subject: Department of Physics

Type: Compulsory
ECTS Credits: 6.0 ECTS


Competences and skills that will be acquired and learning results. Further information on this link
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía CG1. Analyze and synthesize basic problems related to physics and engineering, solve them and communicate them efficiently. CG2. Learn new methods and technologies from basic scientific and technical knowledge, and being able to adapt to new situations. CG3. Solve problems with initiative, decision making, creativity, and communicate and transmit knowledge, skills and abilities, understanding the ethical, social and professional responsibility of the engineering activity. Capacity for leadership, innovation and entrepreneurial spirit. CG5. Use the theoretical and practical knowledge acquired in the definition, approach and resolution of problems in the framework of the exercise of their profession. CE5. Understand and handle the basic concepts of the general laws of mechanics, thermodynamics, fields and waves and electromagnetism and apply them to the resolution of engineering problems. CE12. Understand and handle the mechanisms of propagation and transmission of electromagnetic waves both in free space and guided, including concepts of wave optics, and the corresponding transmitting and receiving devices. CT1. Work in multidisciplinary and international teams as well as organize and plan work making the right decisions based on available information, gathering and interpreting relevant data to make judgments and critical thinking within the area of study. RA1. To have acquired sufficient knowledge and proved a sufficiently deep comprehension of the basic principles, both theoretical and practical, and  methodology of the more important fields in science and technology as to be able to work successfully in them; RA2. To be able, using arguments, strategies and procedures developed by themselves, to apply their knowledge and abilities to the successful solution of complex technological problems that require creating and innovative thinking; RA3. To be able to search for, collect and interpret relevant information and data to back up their conclusions including, whenever needed, the consideration of any social, scientific and ethical aspects relevant in their field of study; RA6. To be aware of their own shortcomings and formative needs in their field of specialty, and to be able to plan and organize their own training with a high degree of independence.
Description of contents: programme
1. Electrostatics in vacuum. Coulomb¿s law. Electric field. Differential and integral formulations of the equations of electrostatics. Electric dipole. Multipolar formalism. 2. Electrostatics in material media. Polarization vector. Polarization charge densities. Electric displacement vector D. Electric susceptibility and permitivity. Boundary conditions for D and E. Electric forces and electric energy. 3. Magnetostatics in vacuum. Electric current and current density. Magnetic induction vector B. Biot-Savart Law. Ampere¿s law. Differential and integral formulation of magnetostatics. Magnetic vector potential. Magnetic dipole. Magnetic scalar potential. 4. Magnetostatics in material media. Magnetization vector. Magnetization currents and magnetic poles. Magnetic intensity vector H. Magnetic susceptibility and permittivity. Boundary conditions for B and H. Magnetic forces and magnetic energy. 5. Electromagnetic fields. Faraday¿s law. Self- and mutual inductance. Displacement current. Maxwell equations. Poynting vector and Poynting¿s theorem. Electromagnetic moment and energy. 6. Electromagnetic waves. Plane waves. Paraxial aproximation and Geometrical Optics Reflection and refraction laws. Polarization of light. Fresnel coefficients. Propagation of waves in dielectric and conducting media. 7. Electromagnetism and the theory of special relativity. The electromagnetic tensor
Learning activities and methodology
AF1. THEORETICAL-PRACTICAL CLASSES. Knowledge and concepts students mustacquire. Receive course notes and will have basic reference texts.Students partake in exercises to resolve practical problems AF2. TUTORING SESSIONS. Individualized attendance (individual tutoring) or in-group (group tutoring) for students with a teacher.Subjects with 6 credits have 4 hours of tutoring/ 100% on- site attendance. AF3. STUDENT INDIVIDUAL WORK OR GROUP WORK.Subjects with 6 credits have 98 hours/0% on-site. AF8. WORKSHOPS AND LABORATORY SESSIONS. Subjects with 3 credits have 4 hours with 100% on-site instruction. Subjects with 6 credits have 8 hours/100% on-site instruction. AF9. FINAL EXAM. Global assessment of knowledge, skills and capacities acquired throughout the course. It entails 4 hours/100% on-site AF8. WORKSHOPS AND LABORATORY SESSIONS. Subjects with 3 credits have 4 hours with 100% on-site instruction. Subjects with 6 credits have 8 hours/100% on-site instruction. MD1. THEORY CLASS. Classroom presentations by the teacher with IT and audiovisual support in which the subject`s main concepts are developed, while providing material and bibliography to complement student learning MD2. PRACTICAL CLASS. Resolution of practical cases and problem, posed by the teacher, and carried out individually or in a group MD3. TUTORING SESSIONS. Individualized attendance (individual tutoring sessions) or in-group (group tutoring sessions) for students with teacher as tutor. Subjects with 6 credits have 4 hours of tutoring/100% on-site. MD6. LABORATORY PRACTICAL SESSIONS. Applied/experimental learning/teaching in workshops and laboratories under the tutor's supervision.
Assessment System
  • % end-of-term-examination 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40

The course syllabus and the academic weekly planning may change due academic events or other reasons.