CB1. Students have demonstrated knowledge and understanding in a field of study that builds upon their general secondary education, and is typically at a level that, whilst supported by advanced textbooks, includes some aspects that will be informed by knowledge of the forefront of their field of study
CB2. Students can apply their knowledge and understanding in a manner that indicates a professional approach to their work or vocation, and have competences typically demonstrated through devising and sustaining arguments and solving problems within their field of study
CB3. Students have the ability to gather and interpret relevant data (usually within their field of study) to inform judgments that include reflection on relevant social, scientific or ethical issues
CB4. Students can communicate information, ideas, problems and solutions to both specialist and non-specialist audiences
CB5. Students have developed those learning skills that are necessary for them to continue to undertake further study with a high degree of autonomy
CG2. Learn new methods and technologies from basic scientific and technical knowledge, and being able to adapt to new situations.
CG3. Solve problems with initiative, decision making, creativity, and communicate and transmit knowledge, skills and abilities, understanding the ethical, social and professional responsibility of the engineering activity. Capacity for leadership, innovation and entrepreneurial spirit.
CG4. Solve mathematical, physical, chemical, biological and technological problems that may arise within the framework of the applications of quantum technologies, nanotechnology, biology, micro- and nano-electronics and photonics in various fields of engineering.
CG5. Use the theoretical and practical knowledge acquired in the definition, approach and resolution of problems in the framework of the exercise of their profession.
CE13. Understand and handle solid state physical principles relevant to engineering and, in particular, semiconductors for application in electronic and photonic components, as well as the fundamentals and applications of analog and digital electronics and microprocessors.
CE15. Understand and handle the physical principles associated with light-matter interaction and to apply them to the use and design of various photonic devices and complete photonic systems, as well as to apply photonic devices and systems in different branches of physics, engineering and biology.
CE17. Understand and handle the fundamental concepts of Quantum Physics, its relationship with Classical Physics, and its application to the understanding of the physics of atoms and molecules, as well as solving simple one- and three-dimensional quantum problems and applying approximate resolution methods.
CE18. Understand and handle the fundamental concepts of Statistical Physics and their relationship with macroscopic reality, the statistics of classical and quantum systems, and the application of these statistics to relevant situations in Physics and Engineering.
CT1. Work in multidisciplinary and international teams as well as organize and plan work making the right decisions based on available information, gathering and interpreting relevant data to make judgments and critical thinking within the area of study.
RA1. To have acquired sufficient knowledge and proved a sufficiently deep comprehension of the basic principles, both theoretical and practical, and methodology of the more important fields in science and technology as to be able to work successfully in them;
RA2. To be able, using arguments, strategies and procedures developed by themselves, to apply their knowledge and abilities to the successful solution of complex technological problems that require creating and innovative thinking;
RA3. To be able to search for, collect and interpret relevant information and data to back up their conclusions including, whenever needed, the consideration of any social, scientific and ethical aspects relevant in their field of study;
RA6. To be aware of their own shortcomings and formative needs in their field of specialty, and to be able to plan and organize their own training with a high degree of independence.