Última actualización: 09/02/2024


Curso Académico: 2023/2024

Ficheros y bases de datos
(18278)
Grado en Matemática Aplicada y Computación (Plan: 433 - Estudio: 362)


Coordinador/a: CALLE GOMEZ, FRANCISCO JAVIER

Departamento asignado a la asignatura: Departamento de Informática

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
- Programación (Curso: 1 / Cuatrimestre: 1) - Matemática Discreta: (Curso: 1 / Cuatrimestre: 2) - Estructuras de Datos y Algoritmos (Curso: 2 / Cuatrimestre: 2) - Estructura de Computadores: (Curso: 2 / Cuatrimestre: 1)
Competencias y resultados del aprendizaje
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. CG1. Que los estudiantes sean capaces de demostrar conocimiento y comprensión de conceptos de matemáticas, estadística y computación y aplicarlos a la resolución de problemas en ciencia e ingeniería con capacidad de análisis y síntesis. CG3. Que los estudiantes puedan resolver computacionalmente con ayuda de las herramientas informáticas más avanzadas los modelos matemáticos que surjan de aplicaciones en la ciencia, la ingeniería, la economía y otras ciencias sociales. CG4. Que los estudiantes demuestren que pueden analizar e interpretar las soluciones obtenidas con ayuda de la informática de los problemas asociados a modelos matemáticos del mundo real, discriminando los comportamientos más relevantes para cada aplicación. CG6. Que los estudiantes sepan buscar y utilizar los recursos bibliográficos, en soporte físico o digital, necesarios para plantear y resolver matemática y computacionalmente problemas aplicados que surjan en entornos nuevos, poco conocidos o con información insuficiente. CE12. Que los estudiantes hayan demostrado que conocen las principales estructuras de datos siendo capaz de utilizarlas, diseñarlas e implementarlas determinando su complejidad computacional y de almacenamiento. CE18. Que los estudiantes sepan evaluar y seleccionar de forma adecuada sistemas de almacenamiento y gestión de bases de datos y diseñar adecuadamente las estructuras de almacenamiento y acceso, así como aplicaciones que hagan uso de ellas, incluyendo las herramientas de visualización de datos. RA2. Poder, mediante argumentos o procedimientos elaborados y sustentados por ellos mismos, aplicar sus conocimientos, la comprensión de estos y sus capacidades de resolución de problemas en ámbitos laborales complejos o profesionales y especializados que requieren el uso de ideas creativas e innovadoras. RA3. Tener la capacidad de recopilar e interpretar datos e informaciones sobre las que fundamentar sus conclusiones incluyendo, cuando sea preciso y pertinente, la reflexión sobre asuntos de índole social, científica o ética en el ámbito de su campo de estudio. RA5. Saber comunicar a todo tipo de audiencias (especializadas o no) de manera clara y precisa, conocimientos, metodologías, ideas, problemas y soluciones en el ámbito de su campo de estudio. RA6. Ser capaces de identificar sus propias necesidades formativas en su campo de estudio y entorno laboral o profesional y de organizar su propio aprendizaje con un alto grado de autonomía en todo tipo de contextos (estructurados o no).
Descripción de contenidos: Programa
Los descriptores asociados a la asignatura son: Organizaciones serial, secuencial, direccionada e indizada. Accesos multiclave. Modelo de datos Relacional. Sistemas gestores de bases de datos relacionales. Lenguaje de datos SQL: definición y manipulación. El programa presenta el siguiente temario: TEMA 1. Introducción al Almacenamiento y a las Bases de Datos Enfoques Físico y Lógico Concepto de Base de Datos TEMA 2. Estática del Modelo Relacional Elementos del Modelo. Descripción y Representación. Restricciones Inherentes y Semánticas TEMA 3. Dinámica del Modelo Relacional Álgebra Relacional Manipulación de datos con SQL TEMA 4. Elementos Relacionales Avanzados Vistas Disparadores TEMA 5. Introducción y Conceptos Básicos de Ficheros Diseño de Ficheros. Objetivos del Diseño Físico Procesamiento de Ficheros: Selección y Localización TEMA 6. Organizaciones Base Organizaciones Básicas: Serial y Secuencial Organizaciones Direccionadas Clusters TEMA 7. Organizaciones Auxiliares Organización Indizada Índices con estructura arbórea B Índices especiales: bitmap Procesos Indizados TEMA 8. Sistemas Gestores de Bases de Datos Arquitectura y elementos del SGBD Oracle Esquema Interno en el SGBD Oracle Procesos y Planes de Ejecución en el SGBD Oracle TEMA 9. Paradigmas de Almacenamiento Caracterización de Almacenes de datos: OLTP vs OLAP Introducción a las atecnologías OLAP: tipos, usos y herramientas.
Actividades formativas, metodología a utilizar y régimen de tutorías
CLASES TEÓRICO-PRÁCTICAS [44 horas con un 100% de presencialidad, 1.67 ECTS] Conocimientos que deben adquirir los alumnos. Estos recibirán las notas de clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior. Para completar la formación, se resolverán ejercicios y casos prácticos por parte del alumno y se realizarán talleres y pruebas de evaluación. TUTORÍAS [4 horas con un 100% de presencialidad, 0.15 ECTS] Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. [98 horas con 0% de presencialidad, 3.72 ECTS] TALLERES Y LABORATORIOS. [8 horas con 100% de presencialidad, 0.3 ECTS] EXAMEN FINAL. [4 horas con 100% de presencialidad, 0.15 ECTS] Se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. METODOLOGÍAS DOCENTES CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos. PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. PRÁCTICAS DE LABORATORIO. Docencia aplicada/experimental a talleres y laboratorios bajo la supervisión de un tutor.
Sistema de evaluación
  • Peso porcentual del Examen Final 50
  • Peso porcentual del resto de la evaluación 50
Calendario de Evaluación Continua
Bibliografía básica
  • Cuadra, D., Castro, E., Iglesias, A., Martínez, P., Calle, J., de Pablo, C., Al'Jumaily, H., Moreno, L.. Desarrollo de Bases de Datos: casos prácticos desde el análisis a la implementación. Ra-Ma. 2ª ed. revisada y ampliada (2013)
  • Elmasri, R. y Navathe, S.. Fundamentos de Sistemas de Bases de Datos (5ª ed).. Grupo Anaya. 2007
  • Elmasri, R. y Navathe, S.. Fundamentals of Database Systems (7th ed.). Pearson Education. 2017
  • Oracle® . SQL*Plus. User's Guide and Reference. http://docs.oracle.com/database/121/SQPUG/E18404-12.pdf. 2013
  • Oracle® Database. SQL Language Reference. http://docs.oracle.com/database/121/SQLRF/E41329-17.pdf. 2015
  • Silverschatz, A., Korth, H. F. & Sudarshan, S.. Database System Concepts, 7th ed . Mc-Graw Hill. 2019
  • Silverschatz, A., Korth, H. F. y Sudarshan, S.. Fundamentos de Bases de Datos, (3ª - 6ª edición). Mc-Graw Hill. 2014
Recursos electrónicosRecursos Electrónicos *
Bibliografía complementaria
  • Ramakrishnan, R.; Gehrke, J.. Sistemas de Gestión de Bases de Datos. WCB/McGraw Hill. 3ªed, 2012
  • Date, C.J.. Introducción a los Sistemas de Bases de Datos (7ª edición).. Ed Alhambra / Pearson Educación. 2001
  • Frakes, W. y Baeza-Yates, R., Eds.. Information retrieval. Data structures and algorithms.. Prentice Hall.. 1992
  • Gaede, O. and Günther,V. (1998).. Multidimensional Access Methods.. ACM Computing Surveys, Vol. 30, No. 2. . (c) 1998 ACM NY.
  • Guttman, A. . R-trees: A dynamic index structure for spatial searching. Procs. of the ACM SIGMOD 84, Int. Conference on Management of Data.. 1984
  • Livadas, Panos E.. File Structures: Theory and Practice.. Ed. Prentice-Hall Int. 1990
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.