Última actualización: 28/06/2021


Curso Académico: 2021/2022

Geometría Lineal
(18259)
Titulación: Grado en Matemática Aplicada y Computación (362)


Coordinador/a: SANZ SERNA, JESUS MARIA

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación Básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Fundamentos de álgebra, Álgebra lineal, Cálculo diferencial
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Problemas de mínimos cuadrados. 2. Autovalores y autovectores: diagonalización de matrices y triangularización de Schur 3. La forma canónica de Jordan 4. Matrices normales y su teorema espectral 5. Matrices definidas positivas 6. Formas bilineales y cuadráticas 7. La descomposición en valores singulares 8. Espacios afines y sus aplicaciones 9. Aplicaciones afines 10. Cónicas y cuádricas
Actividades formativas, metodología a utilizar y régimen de tutorías
ACTIVIDADES FORMATIVAS, METODOLOGÍA A USAR Y REGIMEN DE TUTORÍAS CLASES TEÓRICO-PRÁCTICAS [44 horas con un 100% de presencialidad, 1.76 ECTS] Conocimientos que deben adquirir los alumnos. Estos recibirán las notas de clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior. Se resolverán ejercicios, prácticas y problemas por parte del alumno y se realizarán talleres y pruebas de evaluación para adquirir las capacidades necesarias. TUTORÍAS [4 horas con un 100% de presencialidad, 0.16 ECTS] Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. [98 horas con 0% de presencialidad, 3.92 ECTS] EXAMEN FINAL. [4 horas con 100% de presencialidad, 0.16 ECTS] Se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. METODOLOGÍAS DOCENTES CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos. PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor.
Sistema de evaluación
  • Peso porcentual del Examen Final 50
  • Peso porcentual del resto de la evaluación 50
Calendario de Evaluación Continua
Bibliografía básica
  • B. Noble, J.W. Daniel. Applied Linear Algebra. Prentice-Hall Int.. 1988
  • C.D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM. 2000
  • D.C. Lay, S.R. Lay, J.J. McDonald. Linear Algebra and its Applications. 5th edition. Pearson, 2016
  • G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press. 2016
  • O. Faugeras. Three Dimensional Computer Vision, A Geometric Viewpoint. The MIT Press. 1993
  • S.R. García and R.A. Horn. A Second Course in Linear Algebra. Cambridge University Press. 2017
Bibliografía complementaria
  • E. Outerelo Domínguez y J.M. Sánchez Abril. Nociones de Geometría Proyectiva. Sanz y Torres. 2009
  • P. Lancaster and M. Tismenetsky. The Theory of Matrices with Applications, 2nd edition. Academic Press, Inc.. 1985
  • R.A. Horn and C.R. Johnson. Matrix Analysis, 2nd edition. Cambridge University Press. 2013

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.