Última actualización: 26/07/2021


Curso Académico: 2021/2022

Cálculo Vectorial
(18258)
Titulación: Grado en Matemática Aplicada y Computación (362)


Coordinador/a: MOLERA MOLERA, JUAN MANUEL

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Álgebra Lineal (1er curso, 1er cuatrimestre) Cálculo Diferencial (1er curso, 1er cuatrimestre)
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. El Espacio Euclídeo Rn. 2. Funciones. 3. Diferenciabilidad. 4. Gradiente, Divergencia y Rotacional. 5. Polinomio de Taylor y Extremos. 6. Multiplicadores de Lagrange y el Teorema de la función implícita. 7. Curvas. 8. Superficies.
Actividades formativas, metodología a utilizar y régimen de tutorías
ACTIVIDADES FORMATIVAS, METODOLOGÍA A USAR Y REGIMEN DE TUTORIAS CLASES TEÓRICO-PRÁCTICAS [44 horas con un 100% de presencialidad, 1.76 ECTS] Conocimientos que deben adquirir los alumnos.Estos recibirán las notas de clase y tendrán textos básicos de referencia para facilitar el seguimiento de las clases y el desarrollo del trabajo posterior.Se resolverán ejercicios, prácticas problemas por parte del alumno y se realizarán talleres y prueba de evaluación para adquirirlas capacidades necesarias. TUTORÍAS [4 horas con un 100% de presencialidad, 0.16 ECTS] Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor. TRABAJO INDIVIDUAL O EN GRUPO DEL ESTUDIANTE. [98 horas con 0% de presencialidad, 3.92 ECTS] EXAMEN FINAL. [4 horas con 100% de presencialidad, 0.16 ECTS] Se valorarán de forma global los conocimientos, destrezas y capacidades adquiridas a lo largo del curso. METODOLOGÍAS DOCENTES CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos. PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Calendario de Evaluación Continua
Bibliografía básica
  • J. E. Marsden and A. J. Tromba. Vector Calculus, 6th. edition. W. H. Freeman. 2012
  • Manfredo P. Do Carmo. Differential Geometry of Curves and Surfaces. Dover Publications; Updated, Revised (2nd) edition. 2016
  • Seán Dineen. Multivariate Calculus and Geometry, 3rd Edition. Springer. 2014
  • Tom M. Apostol. Mathematical Analysis, 2nd ed.. Pearson Education, Inc.. 1974
Bibliografía complementaria
  • J. E. Marsden and M. J. Hoffman. Elementary Classical Analysis, 2nd ed.. W. H. Freeman and Company. 1974
  • J. Rogawski and C. Adams.. Calculus: Early Transcendentals. . W. H. Freeman and Company (Third Edition Volume I and II). . 2015
  • J. Stewart. Calculus. Cengage. 2008
  • M. D. Weir, J. Hass, and G. B. Thomas. Thomas' Calculus 12th ed. Addison-Wesley . 2006
  • M. J. Strauss, G. L. Bradley, and K. J. Smith. Multivariable Calculus. Prentice Hall. 2002
  • R. Larson and B. H. Edwards. Calculus II, 9th. edition. Cengage. 2009
  • S. Salas, E. Hille, and G. Etgen. Calculus. One and several variables. Wiley. 2007
  • T. M. Apostol. Calculus (Vol. 2). Wiley. 1975

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.