Última actualización: 13/05/2019


Curso Académico: 2019/2020

Econometría
(17634)
Titulación: Grado en Empresa y Tecnología (351)


Coordinador/a: DELGADO GONZALEZ, MIGUEL ANGEL

Departamento asignado a la asignatura: Departamento de Economía

Tipo: Obligatoria
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Materias que se recomienda haber superado
Matemáticas para la Economía I Matemáticas para la Economía II Estadística I Estadística II Principios de Economía Microeconomía
Competencias que adquiere el estudiante y resultados del aprendizaje.Más información en este enlace
Este curso ofrece una introducción al análisis de datos en Ciencias Sociales mediante el modelo de regresión lineal múltiple. Se enfatiza la interpretación del modelo y la aplicación de técnicas de inferencia estadística sobre el mismo con el objeto de resolver casos relevantes en la práctica. El curso discute con detalle la realización de inferencias en circunstancias no estándar, de especial relevancia en Ciencias Sociales, provocadas por la naturaleza de las variables utilizadas en el modelo (cualitativas, transformadas para permitir relaciones no-lineales o no-observables), o por la naturaleza de los datos. La justificación rigurosa de las técnicas de inferencia utilizadas no es objeto de estudio; estos aspectos son tratados en asignaturas optativas como Econometría Avanzada. El bagaje de Probabilidad, Estadística, Álgebra y Cálculo ofrecido en Matemáticas I y II y Estadística I y II es más que suficiente para seguir este curso. Al final del curso el alumno debe saber interpretar el modelo de regresión lineal múltiple, discriminar entre especificaciones alternativas con la ayuda de la inferencia estadística y utilizar el software GRETL para estimar los modelos y realizar hipótesis sobre los mismos.
Descripción de contenidos: Programa
Este curso ofrece una introducción al análisis de datos en Ciencias Sociales mediante el modelo de regresión lineal múltiple. Se enfatiza la interpretación del modelo y la aplicación de técnicas de inferencia estadística sobre el mismo con el objeto de resolver casos relevantes en la práctica. El curso discute con detalle la realización de inferencias en circunstancias no estándar, de especial relevancia en Ciencias Sociales, provocadas por la naturaleza de las variables utilizadas en el modelo (cualitativas, transformadas para permitir relaciones no-lineales o no-observables), o por la naturaleza de los datos. El curso sigue el texto de Stock y Watson (2012) capítulos 1 al 12. Este es el programa detallado de la asignatura: 1. La naturaleza de la Econometría y la naturaleza de los datos económicos (SW Cp. 1, 2 & 3) 2. El modelo de regresión simple (SW Cp. 4,5) 3. Análisis de regresión múltiple: estimación (SW. Cp. 6) 4. Análisis de regresión múltiple: inferencia (SW Cp. 7) 5. Regresión no-lineal utilizando regresión lineal múltiple (SW. Cp. 8) 6. Elección discreta (SW. 11) 7. Estimación por variables instrumentales y mínimos cuadrados en dos etapas (SW. Cp. 12)
Actividades formativas, metodología a utilizar y régimen de tutorías
El software libre GRETL es la herramienta fundamental de aprendizaje. Los diferentes conceptos se discuten en el contexto de casos de estudio en Ciencias Sociales utilizando datos reales. Los alumnos han de entregar prácticas realizadas con GRETL de forma periódica.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Bibliografía básica
  • Goldberger, A.S.. Introducción a la Econometría. Ariel. 2001
  • Greene, W.H.. Análisis Econométrico. Prentice Hall. 1998
  • Gujarati, D.N.. Econometría. McGraw-Hill. 2010
  • Stock, J.H. & M.W. Watson. Introduction to Econometrics. Addison Wesley. 2012
  • Wooldridge, J.M.. Introducción a la Econometría: un Enfoque Moderno. Paraninfo Thompson Learning. 2003
Bibliografía complementaria
  • Hayashi, F.. Econometrics. Princeton University Press. 2000
  • Wooldridge, J.M.. Econometric analysis of cross section and panel data . The MIT Press. 2009

El programa de la asignatura y la planificación semanal podrían sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.


Dirección web para más información: http://www.eco.uc3m.es/docencia/econometria/index.html