Part I: Univariate analysis of macroeconomic time series
I.1 Univariate Models
I.1a Evolution & decomposition of univariant time series
- Stationary and non-stationary variables. Integrated processes, random walks,
martingales and unit root testing (Dickey-Fuller)
- Transformations of variables (logarithms & differencing)
- Trend and cyclical properties of macroeconomic variables
- Trend-Cycle decompositions: Beveridge-Nelson (BN) and the Hodrick-
Prescott (HP) filter
- ARIMA Models: Impulse Response Functions and Forecasting
Empirical Applications:
- International evolution of income per capita and it's components
- Evolution of macroeconomic aggregates
- Purchasing power parity (PPP)
- Descriptive and graphical analysis of the current state of the economy
- The efficiency of financial markets, etc.
I.1b Non-linearity and Stationarity
- Seasonal filters, seasonally adjusted variables
- Non-linearity in parameters vs. Non-linearity in regressors,
- Structural change in the parameters and threshold variables
- Smooth Transition Autoregressive Models (STAR)
- Autoregressive Models with Conditional Heteroskedasticity (ARCH, GARCH)
- Non-linearity in the mean versus non-lineality in the variance
Empirical Applications:
- Modeling of energy prices in centralized markets (asymmetries and volatility)
- Asymmetries in the increases and decreases in oil prices etc., Rockets and Feathers hypothesis, etc.
- Modeling inflation and its volatility
- Modeling of financial assets and their volatility
I.2 Single Equation Models
I.2a Specification and comparisons of single equation models
- Estimation & inference in static and dynamic regression models
- Specification of models from general to particular
- Specification testing: Consistency and nested models
- Exogeneity & Causality: Concepts & tests
- Error Correction Models (EC or EqCM) & Co-integration
- Spurious regression & cointegration
Empirical Applications:
- Micro-fundamentals of single-equation specification
- Production functions and growth accounting
- Determinants of growth
- Demand for Money in the UK (1878-1970)
- Hypothesis testing of finance models (CAPM), etc.
I.2b Non-linear single-equation Models
- Estimation & inference in dynamic non-linear regression models
- Non-linear error correction models (NEC)
- Smooth transition regression models (STR) & structural change
Empirical Applications:
- Money Demand in the UK (1878-1970)
- Inflation & Unemployment: The Phillips Curve
Part II: Analysis of Mulitple Equation Models
II.1 The Vector Autoregression (VAR) model
a) Stationary Case:
- Structural form (SVAR) vs. Reduced form (VAR): Identification
- VMA Representation (Wold) & Impulse Response Functions
- Variance Decomposition and Forecasting
- Formulation, estimation, diagnostics, selection of lag length.
- The SVAR model, weak and strong exogeneity, Granger causality, the
Lucas¿s critic, super-exogeneity
b) Non-stationary case without cointegration:
- Multivariate trend-cycle decomposition of Beveridge-Nelson (BN)
- Structural Vector Autoregression (SVAR) with I(1) & I(0) variables:
Identification by use of long-run restrictions
Empirical applications:
-Analysis of the New York Fish Markets (Fulton): System of equations of supply
and demand.
-Testing long-run neutrality
-Blanchard and Quah model with long-run restrictions: GDP and
Unemployment
c) Non-stationary case with cointegration:
- Multivariate trend-cycle decomposition of Beveridge-Nelson (BN) & the
representation of common trends
- Error Correction Mechanism & analysis of co-integration: Granger´s Representation
Theorem
- Multivariate time series models/Vector Error Correction Models (VEqCM)
- The Maximum-Likelihood approach of Johansen for the estimation of the rank
of cointegrated systems
Empirical application
-Money Demand
Part III: Student´s Empirical Project