1. Introduction to convection heat transfer. 1.1 Introduction. 1.2. Boundary layer in convective processes: hydrodynamic and thermal boundary layer, laminar and turbulent flow. 1.3 Boundary layer equations. 1.4 Non-dimensional equations of convective processes: Reynolds number, Nusselt number. 1.5 Turbulent boundary layer.
2. External flow: 2.1 Introduction 2.2 Determination of convection heat transfer coefficients. 2.3 Correlations for flat plates in parallel flow Laminar and turbulent flow, Critical Reynolds number), cylinders and spheres in cross flow, non-circular cylinders, tube bank and impinging jets.
3. Internal flow. 3.1 Hydrodynamics: laminar and turbulent flow, critical Reynolds number, fully developed conditions, pressure drop in tubes. 3.2 Thermal aspects. 3.3 Energy balance: constant surface heat flux, constant surface temperature, external flow; the log mean temperature difference. 3.4 Internal flow correlations.
4. Free convection. 4.1 Introduction 4.2 Conservation equations: introduction of the buoyancy force in the conservation equations. 4.3 Non-dimensional equations: Grashof and Rayleigh numbers, transition to turbulent flow in a vertical surface, combines free and forces convection. 4.4 Correlations: external free convection, free convection within parallel plate channels and enclosures.
5. Boiling and condensation. 5.1 Introduction: non-dimensional parameters 5.2 Boiling: pool boiling, forced convection boiling. 5.3 Condensation: film condensation on a vertical plate, film condensation on tubes and spheres, condensation on a vertical tier of tubes, film condensation in horizontal tubes, drop condensation on a horizontal surface.
6. Heat exchangers. 6.1 Types of heat exchangers, parallel and counter-current heat exchangers. 6.2 Global heat transfer coefficient and total thermal resistance. 6.3 Heat exchanger analysis: log-mean temperature difference, Epsilon-NTU method, P-NTU method, characteristic curves. 6.4 Shell-and-tube heat exchangers. 6.5 Plate heat exchanger. 6.6 Cross-flow heat exchangers and compact heat exchangers.
7. Psychometry. 7.1 Moist air. 7.2 Moist content parameters. 7.3 Mass and energy balance, mixture enthalpy. 7.4 Air saturation processes: dew point, adiabatic saturation temperature, wet-bulb temperature. 7.5 Psychometric charts. 7.6 Psychrometric applications: sensible heating/cooling, humidification, evaporative cooling, dehumidification, adiabatic mixing and cooling towers.
8. Radiation. 8.1 Introduction to thermal radiation. 8.2 Black body radiation. 8.3 Radiation intensity and radiation power. 8.4 Real surfaces radiation: emissivity, absorptivity, reflectivity, transmissivity. Kirchhoff´s law. 8.5 Solar radiation. Net radiation exchange at a surface. 8.6 Radiation exchange between surfaces: view factor relations, net radiation exchange between black surfaces, net radiation exchange between gray diffuse surfaces, radiation network, application examples (radiation shields, the reradiating surface), and multimode heat transfer.