Última actualización: 07/06/2023


Curso Académico: 2023/2024

Instrumentación electrónica en sistemas energéticos
(16849)
Grado en Ingeniería de la Energía (Plan: 452 - Estudio: 280)


Coordinador/a: SANCHEZ MONTERO, DAVID RICARDO

Departamento asignado a la asignatura: Departamento de Tecnología Electrónica

Tipo: Optativa
Créditos: 3.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
- Fundamentos de Ingeniería Electrónica (2º Curso, 2º Cuatrimestre). Se recomienda encarecidamente haberla superado.
Objetivos
Al terminar con éxito esta asignatura, los estudiantes serán capaces de: 1- Tener conocimiento y comprensión sobre los distintos sensores de uso más común en el entorno industrial dentro de sector energético, y sus limitaciones. 2- Tener conocimiento y comprensión sobre las técnicas básicas de acondicionamiento de la señal de salida del transductor, y sus limitaciones. 3- Tener conocimiento y la capacidad de aplicar los principios básicos del tratamiento de las señales de los sensores mediante circuitos electrónicos. 4- Tener capacidad de combinar la teoría y la práctica para resolver problemas de instrumentación electrónica. 5- Tener la capacidad de analizar, diseñar y documentar un sistema de instrumentación electrónica y optoelectrónica para su aplicación en sistemas o entornos energéticos 6- Tener conocimiento en el manejo de equipos y sistemas de medida para poder analizar de manera experimental sistemas de instrumentación electrónica sencillos en un laboratorio de electrónica, así como desarrollar el espíritu crítico para la interpretación de los datos y la elaboración de conclusiones relativas al correcto funcionamiento de dichos sistemas. 7- Funcionar de forma efectiva tanto de forma individual como en equipo. 8- Demostrar conciencia sobre la responsabilidad de la práctica de la ingeniería, el impacto social y ambiental, y compromiso con la ética profesional, responsabilidad y normas de la práctica de la ingeniería. 9- Reconocer la necesidad y tener la capacidad para desarrollar voluntariamente el aprendizaje continuo.
Competencias y resultados del aprendizaje
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. CG4. Ser capaz de realizar el diseño, análisis, cálculo, construcción, ensayo, verificación, diagnóstico y mantenimiento de dispositivos y sistemas energéticos. CG10. Ser capaz de trabajar en un entorno multilingüe y multidisciplinar. CE4 Módulo CRI. Conocimientos básicos y aplicados de los sistemas de producción y fabricación, metrología y control de calidad. CE7 Módulo CRI. Conocimientos de los fundamentos de la electrónica y su aplicación a la instrumentación electrónica. CE8 Módulo TE. Conocimiento aplicado sobre energías renovables. CT1. Capacidad de comunicar los conocimientos oralmente y por escrito, ante un público tanto especializado como no especializado. CT2. Capacidad de establecer una buena comunicación interpersonal y de trabajar en equipos multidisciplinares e internacionales. CT3. Capacidad de organizar y planificar su trabajo, tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios dentro de su área de estudio. CT4. Motivación y capacidad para dedicarse a un aprendizaje autónomo de por vida, que les permita adaptarse a nuevas situaciones. Al terminar con éxito esta materia, los estudiantes serán capaces de: RA1.1: Tener un conocimiento y comprensión de los principios científicos que subyacen a la rama de la ingeniería de la energía. RA1.4: Tener conciencia del contexto multidisciplinar de la ingeniería. RA2.1: Tener capacidad de aplicar su conocimiento y comprensión para identificar, formula y resolver problemas de ingeniería de la energía utilizando métodos establecidos. RA4.1: Tener capacidad de realizar búsquedas bibliográficas, utilizar bases de datos y otras fuentes de información. RA4.2: Tener la capacidad de diseñar y realizar experimentos, interpretar los datos y sacar conclusiones. RA4.3: Tener competencias técnicas y de laboratorio. RA5.1: Tener la capacidad de seleccionar y utilizar equipos, herramientas y métodos adecuados. RA5.2: Tener la capacidad de combinar la teoría y la práctica para resolver problemas de ingeniería de la energía. RA5.3: Tener la comprensión de los métodos y técnicas aplicables y sus limitaciones. RA6.1: Funcionar de forma efectiva tanto de forma individual como en equipo RA6.3: Demostrar conciencia sobre la responsabilidad de la práctica de la ingeniería, el impacto social y ambiental, y compromiso con la ética profesional, responsabilidad y normas de la práctica de la ingeniería. RA6.5: Reconocer la necesidad y tener la capacidad para desarrollar voluntariamente el aprendizaje continuo.
Descripción de contenidos: Programa
1.INTRODUCCIÓN 1.1 ¿Para qué se utilizan los sistemas de instrumentación? 1.2 ¿Qué elementos componen una cadena de medida? ¿Qué función tienen cada uno de los elementos de un sistema de medida? 1.3 Ejemplo de sistema de instrumentación en entornos/sistemas energéticos 2. SENSORES Y TRANSDUCTORES 2.1 ¿Qué es un transductor? 2.2 Ventajas e inconvenientes de los transductores de tipo eléctrico. 2.3 Sensores activos y pasivos. 2.4 Clasificación según el parámetro eléctrico que se obtiene del transductor. 3. CARACTERÍSTICAS DE UN TRANSDUCTOR 3.1 Introducción: régimen estático y dinámico 3.2. Exactitud y fidelidad. 3.3. Curva de calibración estática. 3.4. Rango y escala total de la medida. 3.5. Sensibilidad. 3.6. Linealidad. 3.7. Resolución y umbral. 3.8. Repetitividad, histéresis y estabilidad. 3.9. Ancho de banda 4. ACONDICIONAMIENTO DE LA SEÑAL DE SALIDA DE UN TRANSDUCTOR 4.1 ¿Por qué son necesarios y qué características tienen los circuitos acondicionadores de transductores? 4.2 Circuito potenciométrico. 4.3 Circuito puente de Wheatstone. 4.4 Amplificación tras el circuito acondicionador del transductor pasivo. 4.5. Modulación y demodulación 4.6. Conversión analógico-digital 5. TRANSDUCTORES PARA LA MEDIDA DE TEMPERATURA 5.1 Campos de aplicación. Definición, escalas de Temperatura y patrones. 5.2. Medidas de temperatura por efectos mecánicos. 5.3. Termometría con circuitos integrados (CI). 5.3.1. Principio de funcionamiento. Características estáticas. 5.3.2. Circuitos acondicionadores y medida. 5.3.3. Hojas de características de CI comerciales para la medida de temperatura. 5.4. Termómetros resistivos. 5.4.1. Principio de funcionamiento. Características estáticas. 5.4.2. Circuitos acondicionadores y de medida. 5.4.3. Termómetros resistivos comerciales, hojas de características. 5.5. Termopares. 5.5.1. Principio de funcionamiento. 5.5.2. Curvas de calibración. 5.5.3. Sistemas de medida. 5.6. Comparativa entre sensores de temperatura 6. SENSORES PARA LA MEDIDA DE DEFORMACIONES 6.1. Interés y campos de aplicación. Conceptos básicos de elasticidad. 6.2. Principio de funcionamiento. 6.3. Tipos de extensómetros. 6.4. Características estáticas y reglas de colocación. 6.5. Circuitos acondicionadores. 7. SENSORES DE POSICIÓN 7.1. Campos de aplicación. Definición, tipos de medida y patrones. 7.2. Potenciómetros resistivos y circuitos de medida 7.3. Sensores de desplazamiento basados en el efecto Hall. 7.4. Sensores de desplazamiento de tipo inductivo y capacitivo y circuitos acondicionadores 8. SENSORES ÓPTICOS 8.1 Propiedades de la luz. Fotometría. Fuentes de luz y parámetros característicos. 8.2. Células fotoconductoras y circuitos acondicionadores 8.3. Fotodiodos y fototransistores, hojas de características y circuitos acondicionadores 8.4. Célula fotovoltaica y transductores fotoemisivos. 8.5. Sensores con fibras ópticas. LABORATORIO: Realización de prácticas de laboratorio con el objeto de desarrollar mini-proyectos o montajes de instrumentación electrónica para la medida de algunas magnitudes físicas de interés dentro de las aplicaciones industriales para sistemas energéticos.
Actividades formativas, metodología a utilizar y régimen de tutorías
- Clases magistrales, donde se presentarán los conocimientos que los alumnos deben adquirir, tutorías individuales y trabajo personal del alumno; orientados a la adquisición de conocimientos teóricos. - Resolución de ejercicios por parte del alumno que le servirá de autoevaluación y para adquirir las capacidades necesarias. - Clases de problemas, en las que se desarrollen y discutan los problemas que se proponen a los alumnos. - Prácticas de laboratorio orientadas a la adquisición de habilidades prácticas relacionadas con el programa de la asignatura y en donde el alumno verifique experimentalmente los conceptos y resultados teóricos vistos en clase.
Sistema de evaluación
  • Peso porcentual del Examen Final 30
  • Peso porcentual del resto de la evaluación 70
Calendario de Evaluación Continua
Bibliografía básica
  • A.M. Lázaro. Problemas resueltos de instrumentación y medidas eléctricas. Marcombo. 1998
  • E. Udd. Fiber Optic Sensors: An Introduction for Engineers and Scientists. Wiley. 2011
  • J. T. Humphries. Industrial Electronics. Delmar. 1993
  • M. A. Pérez García et al. . Instrumentación Electrónica. Thompson. 2004
  • R. Pallás Areny. Sensores y acondicionadores de señal. Marcombo. 1998

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.