Última actualización: 28/06/2021


Curso Académico: 2021/2022

Cálculo I
(15064)
Titulación: Grado en Ingeniería de la Energía (280)


Coordinador/a: PESTANA GALVAN, DOMINGO DE GUZMAN

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación Básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Objetivos
Al terminar con éxito esta asignatura, los estudiantes serán capaces de: 1. Tener conocimiento y comprensión de los principios del Cálculo Infinitesimal en una variable que subyacen a la rama de ingeniería industrial. 2. Tener capacidad de aplicar su conocimiento y comprensión del Cálculo Infinitesimal para identificar, formular y resolver problemas matemáticos utilizando métodos establecidos. 3. Tener capacidad de seleccionar y utilizar las herramientas y métodos del cálculo: límites, derivadas, integrales, sucesiones y series, adecuados en cada caso para resolver problemas matemáticos. 4. Tener capacidad de combinar la teoría y la práctica para resolver problemas matemáticos que involucren el Cálculo Infinitesimal. 5. Tener comprensión de los métodos y técnicas aplicables del Cálculo Infinitesimal, su área de aplicación y sus limitaciones.
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Funciones de variable real 1.1 Conjuntos de números, recta real, métodos de razonamiento matemático. Desigualdades y valor absoluto. 1.2 Funciones elementales. Transformaciones elementales. Composición de funciones y función inversa. Coordenadas polares. 1.3 Límites de funciones: Definición y teoremas fundamentales. 1.4 Continuidad de funciones: Propiedades y teoremas fundamentales. 2. Cálculo diferencial de una variable. 2.1 Derivación de funciones: Definiciones. Reglas de derivación. Derivadas de funciones elementales. Significado de la derivada. 2.2 Teoremas fundamentales de derivación. Regla de L'Hopital. Extremos de funciones. 2.3 Estudio local de funciones: crecimiento, convexidad, asíntotas, gráficas de funciones. 2.4 Polinomio de Taylor: Definición, teoremas fundamentales y desarrollos de Taylor conocidos. Evaluación de límites con desarrollos de Taylor. 3. Sucesiones y series. 3.1 Sucesiones de números reales: Conceptos fundamentales, límites de sucesiones. Sucesiones recurrentes. 3.2 Series de números reales: Conceptos fundamentales. Criterios de convergencia para series de números positivos. Convergencia absoluta y condicional. Criterio de Leibniz. Suma de algunas series. 3.3 Series de Taylor: Definición, propiedades, intervalos de convergencia. Ejemplos fundamentales. 4. Integración en una variable. 4.1 Cálculo de primitivas. Integrales inmediatas, integración por partes, cambios de variable. 4.2 Integral definida. Teorema fundamental del cálculo y aplicaciones. 4.3 Aplicaciones de la integral definida: Cálculo de áreas, volúmenes de revolución, longitudes de curvas.
Actividades formativas, metodología a utilizar y régimen de tutorías
La metodología docente incluirá: - Clases magistrales, donde se presentarán los conocimientos que los alumnos deben adquirir. Para facilitar su desarrollo los alumnos recibirán las notas de clase y tendrán textos básicos de referencia que les facilite seguir las clases y desarrollar el trabajo posterior. - Resolución de ejercicios por parte del alumno que le servirá de autoevaluación y para adquirir las capacidades necesarias. - Tutorías. - Evaluación final.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Calendario de Evaluación Continua
Bibliografía básica
  • G.B. Thomas. Cálculo Una Variable. Pearson. 2010
  • PESTANA, D., RODRÍGUEZ, J. M., ROMERA, E., TOURÍS, E., ÁLVAREZ, V., PORTILLA, A.. "Curso práctico de Cálculo y Precálculo". Ariel. 2009
  • R. Larson, B.H. Edwards. Calculus. Brooks-Cole Cengage Learning. 2010, 10th edition
  • S.L. Salas, G.J. Etgen & E. Hille. Calculus: One and Several Variables. Wiley. 2007, 10th edition
Bibliografía complementaria
  • J. Stewart. Calculus. Brooks/Cole Cengage. 2010, 7th edition
  • M. Spivak. Calculus. Publish or Perish. 1994, 3rd edition
  • T. M. Apostol. Mathematical Analysis. Pearson. 1974, 2nd edition
  • T.M. Apostol. Calculus vol. 1. Wiley. 1991

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.