Checking date: 07/06/2023


Course: 2023/2024

Wind Energy
(15070)
Bachelor in Energy Engineering (2013 Study Plan) (Plan: 300 - Estudio: 280)


Coordinating teacher: SANTOS MARTIN, DAVID

Department assigned to the subject: Electrical Engineering Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
All first and second year subjects. Among them, Electrical Power Engineering Fundamentals is of utmost importance. Furthermore, it is desirable to have followed "Electric Power Generation" in the first term of the third year.
Objectives
Students who successfully complete this course will be able: - to summarize the history of modern wind turbines justifying the current technology development. Moreover, students should employ the exact components terminology for the most common applications including, large onshore and offshore schemes as well as small wind turbines. - to compute the basic wind measurement statistics and understand the resource assessment process. - to understand and use the fundamental physics equations that allow to convert wind energy into mechanical and electrical energy. - to describe all wind turbines types and justify their main characteristics. Moreover, students should understand the main mathematical models for the most relevant types, with special emphasis on the different control strategies. - to identify the main wind turbine manufacturers, as well as to properly analyse and compare their technical specifications. - to understand the main impact from high penetration levels of wind energy, and the main aspects of the grid codes developed to mitigate them. - to understand results from dedicated software packages that model wind turbines for economic assessment or power systems analysis. - develop the capacity to work in a team and promote creative team interaction to encourage contribution from all members so as to deliver specific engineering projects and assignments - to understand the United Nations Sustainable Development Goals (SDG), and in particular SDG 7, which ensures access to affordable, reliable, sustainable and modern energy for all. Meeting this goal means investing in clean energy sources (solar, wind or thermal) and produce improvements in technologies to have clean energy in all developing countries, always from a sustainable approach to the environment.
Skills and learning outcomes
CB1. Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2. Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CB3. Students have the ability to gather and interpret relevant data (usually within their field of study) in order to make judgements which include reflection on relevant social, scientific or ethical issues. CB4. Students should be able to communicate information, ideas, problems and solutions to both specialist and non-specialist audiences. CB5. Students will have developed the learning skills necessary to undertake further study with a high degree of autonomy. CG2. Apply computational and experimental tools for analysis and quantification of energy engineering problems CG4. Being able to do design, analysis, calculation, manufacture, test, verification, diagnosis and maintenance of energetic systems and devices. CG7. Assess, control, and reduce the social and environmental impact of projects and facilities within the field of energy engineering. CG8. Know and deal with current legislation in addition to mandatory specifications, regulations and norms within the energy engineering field. CG10. Being able to work in a multi-lingual and multidisciplinary environment CE6 Módulo CRI. Ability for the analysis, design, simulation and optimization of processes and products. CE8 Módulo CRI. Knowledge and ability for systems modelling and simulation. CE20 Módulo CRI. Basic knowledge on environmental and sustainability technologies and their application. CE5 Módulo TE. Ability for the design of electric power plants. CE8 Módulo TE. Applied knowledge on renewable energies. CE13 Módulo TE. Understanding the relation between the different variables seizing in the operation of electric power systems and the electric energy demand coverage. CT1. Ability to communicate knowledge orally as well as in writing to a specialized and non-specialized public. CT2. Ability to establish good interpersonal communication and to work in multidisciplinary and international teams. CT3. Ability to organize and plan work, making appropriate decisions based on available information, gathering and interpreting relevant data to make sound judgement within the study area. CT4. Motivation and ability to commit to lifelong autonomous learning to enable graduates to adapt to any new situation. By the end of this content area, students will be able to have: RA1.1 knowledge and understanding of the scientific principles underlying the branch of energetic technologies. RA1.3 coherent knowledge of their branch of engineering including some at the forefront of solar energy. RA2.1 the ability to apply their knowledge and understanding to identify, formulate and solve problems within the field of energetic technologies using established methods. RA4.1 the ability to conduct searches of literature, and to use data bases and other sources of information. RA4.3 workshop and laboratory skills. RA5.1 the ability to select and use appropriate equipment, tools and methods. RA5.2 the ability to combine theory and practice to solve problems within the field of energetic technologies. RA6.1 function effectively as an individual and as a member of a team. RA6.5 recognise the need for, and have the ability to engage in independent, life-long learning.
Description of contents: programme
1- Introduction - History of the wind energy development - Wind energy statitistics - Current manufacturers and WT models - Wind power myths 2- Aerodynamics of Wind Turbines - Wind Speed - Impact of Friction and Height on Wind Speed - Air Density - WT Blades - Angle of Attack - Relative Wind Speed - Pitch Angle - Coefficient of Performance - Tip-Speed Ratio - Blade Power - Separation of WTs 3- Wind Statistics - Average Variance and Standard Deviation - Cumulative Distribution Function - Probability Density Function - Weibull Distribution Function - Rayleigh Distribution Function - Dependency and Repeatability - Cross-Correlation 4- Overview of Wind Turbines - Classification of Wind Turbines - Alignment of Rotating Axis - Types of Generators - Speed of Rotation - Power Conversion - Control Actions - Types of Wind Turbines - Type 1 Wind Turbine - Type 2 Wind Turbine - Type 3 Wind Turbine - Type 4 Wind Turbine 5- Wind turbine components - Aerodynamic - Mechanical - Generators - Power electronics 6- Type 1 Wind Turbine System - Equivalent Circuit for the Squirrel-Cage Induction Generator - Power Flow - Electric Torque - Maximum Power - Maximum Torque - Assessment of Type 1 System - Control and Protection of Type 1 System - Reactive Power of Type 1 System - Inrush Current - Turbine Stability 7- Type 2 Wind Turbine System - Equivalent Circuit of Type 2 Generator - Real Power - Electric Torque - Assessment of Type 2 System - Control and Protection of Type 2 System - Inrush Current - Turbine Stability 8- Type 3 Wind Turbine System - Equivalent Circuit - Simplified Model - Power Flow - Apparent Power Flow through rotor side converter - Apparent Power Flow through stator side converter - Speed Control - Protection of Type 3 Systems - Electrical Protection - Electromechanical Protection 9- Type 4 Wind Turbine - Full Converter - Power Flow - Real Power Control - Reactive Power Control - Protection - Chopper System - Dynamic Resistance 10- Grid Integration - System stability - Low-Voltage Ride-Through Compliance Techniques - Variability of the Wind Power Production - Uncertainty of Wind Speed - Variability of Wind Power Output - Wind turbine reactive power control 11- Economics of Wind Energy
Learning activities and methodology
The learning methodology consists of: - lectures covering the most important topics defined in the course program. - solving problems proposed in quizzes. - simple problem solving sessions focused on practical situations. There will be 3 laboratory sessions and will be solved with the use of specific software packages.
Assessment System
  • % end-of-term-examination 55
  • % of continuous assessment (assigments, laboratory, practicals...) 45
Calendar of Continuous assessment
Basic Bibliography
  • Alois Schaffarczyk (Editor). Understanding Wind Power Technology: Theory, Deployment and Optimisation. Wiley. 2014
  • By Mohamed A. El-Sharkawi. Wind Energy: An Introduction. CRC Press. 2015
  • Gonzalo Abad, Jesus Lopez, Miguel Rodriguez, Luis Marroyo, Grzegorz Iwanski. Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation. Wiley-IEEE Press. 2011
  • James F. Manwell, Jon G. McGowan, Anthony L. Rogers. Wind Energy Explained: Theory, Design and Application, 2nd Edition. Wiley. 2009
  • Olimpo Anaya-Lara, Nick Jenkins, Janaka Ekanayake, Phill Cartwright, Michael Hughes. Wind Energy Generation: Modelling and Control. Wiley. 2009
  • Thomas Ackermann (Editor). Wind Power in Power Systems, 2nd Edition. Wiley. 2012
Recursos electrónicosElectronic Resources *
Additional Bibliography
  • Bin Wu, Yongqiang Lang, Navid Zargari, Samir Kouro. Power Conversion and Control of Wind Energy Systems. Wiley. 2011
  • Paul A. Lynn. Onshore and Offshore Wind Energy An Introduction. Wiley. 2012
  • R. Nolan Clark. Small Wind - Planning and Building Successful Installations. Elsevier. 2013
  • Siegfried Heier. Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, 3rd Edition. Wiley. 2014
  • Tony Burton, Nick Jenkins, David Sharpe, Ervin Bossanyi. Wind Energy Handbook, 2nd Edition. Wiley. 2011
(*) Access to some electronic resources may be restricted to members of the university community and require validation through Campus Global. If you try to connect from outside of the University you will need to set up a VPN


The course syllabus may change due academic events or other reasons.