Última actualización: 07/06/2023


Curso Académico: 2023/2024

Fundamentos de Ingeniería Eléctrica
(15078)
Grado en Ingeniería de la Energía (Plan: 452 - Estudio: 280)


Coordinador/a: ALONSO-MARTINEZ DE LAS MORENAS, JAIME MANUEL

Departamento asignado a la asignatura: Departamento de Ingeniería Eléctrica

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Todas las de primer curso, pero de forma muy especial, Cálculo I, Cálculo II y Física II.
Objetivos
Al terminar con éxito esta asignatura, los estudiantes serán capaces de: 1. Tener conocimiento y comprensión de los fundamentos de ingeniería eléctrica 2. Tener conciencia del contexto multidisciplinar de la ingeniería eléctrica. 3. Tener capacidad de aplicar su conocimiento y comprensión para identificar, formular y resolver problemas de ingeniería eléctrica utilizando métodos establecidos. 4. Tener capacidad de diseñar y realizar experimentos, interpretar los datos y sacar conclusiones. 5. Tener competencias técnicas y de laboratorio. 6. Tener capacidad de combinar la teoría y la práctica para resolver problemas de ingeniería eléctrica.
Competencias y resultados del aprendizaje
CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética. CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado. CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía. CG2. Aplicar las herramientas computacionales y experimentales para el análisis, y cuantificación de problemas de ingeniería de la energía. CG4. Ser capaz de realizar el diseño, análisis, cálculo, construcción, ensayo, verificación, diagnóstico y mantenimiento de dispositivos y sistemas energéticos. CG10. Ser capaz de trabajar en un entorno multilingüe y multidisciplinar. CE11 Módulo CRI. Conocimiento y utilización de los principios básicos de teoría de circuitos y máquinas eléctricas. CT1. Capacidad de comunicar los conocimientos oralmente y por escrito, ante un público tanto especializado como no especializado. CT2. Capacidad de establecer una buena comunicación interpersonal y de trabajar en equipos multidisciplinares e internacionales. CT3. Capacidad de organizar y planificar su trabajo, tomando las decisiones correctas basadas en la información disponible, reuniendo e interpretando datos relevantes para emitir juicios dentro de su área de estudio. CT4. Motivación y capacidad para dedicarse a un aprendizaje autónomo de por vida, que les permita adaptarse a nuevas situaciones. Al terminar con éxito esta materia, los estudiantes serán capaces de: RA1.2: Tener una comprensión sistemática de los conceptos y aspectos clave de la teoría de circuitos eléctricos. RA2.1: Tener capacidad de aplicar su conocimiento y comprensión para identificar, formular y resolver problemas de teoría de circuitos utilizando métodos establecidos. RA4.2: Tener capacidad de diseñar y realizar experimentos, interpretar los datos y sacar conclusiones. RA4.3: Tener competencias técnicas y de laboratorio. RA5.2: Tener capacidad de combinar la teoría y la práctica para resolver problemas de teoría de circuitos.
Descripción de contenidos: Programa
Introducción a la Ingeniería Eléctrica. Elementos ideales y reales: resistencia, bobina, condensador, bobinas ideales, fuentes de tensión y de intensidad. Leyes de Kirchhoff. Asociación de elementos. Divisor de tensión y de corriente Análisis por tensiones de nudo y por corrientes de malla Superposición. Teoremas de Thévenin y Norton Cálculo simbólico mediante magnitudes fasoriales Análisis de circuitos de corriente alterna Sistemas trifásicos equilibrados Conceptos fundamentales de los sistemas de energía eléctrica
Actividades formativas, metodología a utilizar y régimen de tutorías
Esta asignatura tiene una doble orientación. Por un lado, presenta un aspecto divulgativo de una "cultura general electrotécnica" que implica el conocimiento y el uso con propiedad del lenguaje y la terminología que se utiliza para describir los circuitos y sistemas eléctricos. Por otro contiene una componente práctica susceptible de ser directamente aplicada a la resolución numérica de problemas de análisis de circuitos lineales de parámetros concentrados (y a frecuencia constante en el caso de corriente alterna). Por ello la metodología utilizada es una mezcla de las presentaciones teóricas, que son esencialmente un desarrollo completo y sistemático de las Leyes de Kirchhoff (las dos leyes básicas de la Teoría de Circuitos), y una actividad orientada a la resolución numérica de problemas, que se resolverán de forma manual si se trata de problemas sencillos, o de formulación de ecuaciones y resolución por ordenador en caso de problemas más complejos. Las actividades con presencia de profesorado del estudiante durante el curso se completan con tres sesiones prácticas de dos horas de duración, sobre técnicas generales de medida y seguridad, circuitos de corriente continua, circuitos de corriente alterna y sistemas trifásicos. Se incluirán actividades en las que se empleará el software de simulación PSIM para resolver circuitos, como medio visual e inmediato para afianzar la comprensión de ciertos conceptos y como medio de comprobación de resultados en los ejercicios.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Calendario de Evaluación Continua
Bibliografía básica
  • James William Nilsson. Electric Circuits. Pearson. 2015
  • Jesús Fraile Mora. Electromagnetismo y Circuitos Eléctricos. McGraw-Hill. 2005
  • Jesús Fraile More. Circuitos Eléctricos. Pearson. 2012
Bibliografía complementaria
  • Antonio Gómez Expósito. Fundamentos de Teoría de Circuitos. Thomson. 2007
  • Antonio Gómez Expósito. Teoría de Circuitos - Ejercicios de Autoevaluación. Thomson. 2005
Contenido detallado de la asignatura o información adicional para TFM

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.