Checking date: 31/05/2022

Course: 2022/2023

Study: Bachelor in Energy Engineering (280)

Coordinating teacher: CASCOS FERNANDEZ, IGNACIO

Department assigned to the subject: Department of Statistics

Type: Basic Core
ECTS Credits: 6.0 ECTS


Branch of knowledge: Social Sciences and Law

By the end of this course, students will be able to have: 1. knowledge and understanding of the statistic principles underlying their branch of engineering; 2. the ability to apply their knowledge and understanding to identify, formulate and solve statistic problems using established methods; 3. the ability to apply their knowledge and understanding to analyse engineering products, processes and methods; 4. an understanding of statistics methodologies, and an ability to use them. 5. the ability to select and use appropriate statistic tools and methods; 6. the ability to combine theory and practice to solve engineering problems; 7. an understanding of applicable statistic techniques and methods, and of their limitations;
Skills and learning outcomes
Description of contents: programme
BLOCK 0: DESCRIPTIVE STATISTICS 0. Descriptive Statistics BLOCK I: PROBABILITY 1. Introduction to Probability 1.1 Introduction 1.2 Random phenomena 1.3 Definition of probability and properties 1.4 Assessment of probabilities in practice 1.5 Conditional probability 1.6 Bayes Theorem 2. Random variables 2.1 Definition of random variable 2.2 Discrete random variables 2.3 Continuous random variables 2.4 Characteristic features of a random variable 2.5 Independence of random variables BLOCK II: PARAMETRIC MODELS AND INFERENCE 3. Distribution models 3.1 Binomial distribution 3.2 Geometric distribution 3.3 Poisson distribution 3.4 Uniform distribution (continuous) 3.5 Exponential distribution 3.6 Normal distribution (with CLT) 4. Statistical Inference 4.1 Introduction 4.2 Estimators and their distributions 4.3 Confidence Intervals 4.4 Hypothesis testing 4.5 Particualr tests on a single sample 4.6 Comparison of two populations BLOCK III: APPLICATIONS 5. Quality control 5.1 Introduction, control charts 5.2 Variables control charts, the X-bar chart 5.3 Attributes control charts, the p and np charts 6. Linear regression 6.1 Introduction 6.2 Simple linear regression 6.3 Multiple linear regression
Learning activities and methodology
- Lectures: introducing the theoretical concepts and developments with examples, 2.2 ECTS - Problem solving sessions: 2.2 ECTS - Computer (practical) sessions: 0.6 ECTS -- 4 SESSIONS - Evaluation sessions (continuous evaluation and final exam): 1 ECTS
Assessment System
  • % end-of-term-examination 40
  • % of continuous assessment (assigments, laboratory, practicals...) 60
Calendar of Continuous assessment
Basic Bibliography
  • MONTGOMERY, D.C., RUNGER, G.C. . Applied Statistics and Probability for Engineers. John Wiley & Sons. 2003
  • Navidi, W. . Statistics for Engineers and Scientists. McGraw-Hill. 2006
  • SONG, TT. Fundamentals of Probability and Statistics for Engineers. John Wiley & Sons. 2004
Additional Bibliography
  • GUTTMAN, L., WILKS, S.S., HUNTER, J.S. . Introductory Engineering Statistics. Wiley. 1992
Detailed subject contents or complementary information about assessment system of B.T.

The course syllabus may change due academic events or other reasons.