Última actualización: 17/02/2020


Curso Académico: 2019/2020

Energía Nuclear
(15071)
Titulación: Grado en Ingeniería de la Energía (280)


Coordinador/a: VENEGAS BERNAL, MARIA CARMEN

Departamento asignado a la asignatura: Departamento de Ingeniería Térmica y Fluidos

Tipo: Obligatoria
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Materias que se recomienda haber superado
Cálculo I, II, III Física I, II Fundamentos Químicos de la Ingeniería Técnicas de expresión oral y escrita Programación Ingeniería Térmica Ingeniería Fluidomecánica Centrales térmicas Aero-termoquímica de Sistemas
Competencias que adquiere el estudiante y resultados del aprendizaje.Más información en este enlace
Al terminar con éxito esta asignatura, los estudiantes serán capaces de: 1.- conocer y entender los principios científicos subyacentes a la energía nuclear; 2.- aplicar sus conocimientos y comprensión para identificar, formular y resolver problemas relacionados con la energía nuclear usando métodos establecidos; 3.- aplicar sus conocimientos y comprensión para desarrollar y realizar diseños de sistemas o componentes que cumplan requerimientos específicos; 4.- realizar búsquedas en la literatura, y usar bases de datos y otras fuentes de información; 5.- seleccionar y usar equipos, herramientas y métodos apropiados; 6.- funcionar eficazmente como individuo y como miembro de un equipo; 7.- usar métodos diversos para comunicarse de manera efectiva con la comunidad de ingenieros y con la sociedad en general; 8.- demostrar conciencia de los problemas y responsabilidades legales, de salud y seguridad del uso de la energía nuclear, el impacto de las soluciones en un contexto social y medioamental, y compromiso con la ética profesional, responsabilidades y normas de uso de la energía nuclear.
Descripción de contenidos: Programa
1. Introducción 1.1. Antecedentes históricos y contribución de la energía nuclear a la producción energética en España y el mundo. 1.2. Física nuclear y radioactividad. 1.3. Cinética, dinámica y termohidráulica del reactor. 2. Ciclos termodinámicos y componentes de centrales nucleares 2.1. Tipos de centrales nucleares. 2.2. Ciclos termodinámicos de centrales nucleares. 2.3. Reactor, turbinas, separadores de humedad, condensador, bombas, calentadores, etc. 3. Combustible y seguridad nuclear 3.1. Producción y ciclo del combustible. 3.2. Control y sistemas de seguridad de las centrales nucleares. 4. Protección radiológica y gestión de desechos 4.1. Radiaciones ionizantes y sistemas de medición. 4.2. Equipamiento y sistemas de protección radiológica. 4.3. Clasificación y gestión de los desechos radiactivos. 4.4. Desmantelamiento de centrales. Caso español. 4.5. Aspectos socioeconómicos y medioambientales. 5. Otros desarrollos 5.1. Desarrollos actuales de centrales nucleares.
Actividades formativas, metodología a utilizar y régimen de tutorías
La metodología docente incluirá: (1) Clases magistrales, donde se presentarán los conocimientos que los alumnos deben adquirir. Para facilitar su desarrollo los alumnos recibirán las transparencias y tendrán textos básicos de referencia que les permitan completar su aprendizaje. (2) Resolución de problemas, donde varios aspectos son enfocados desde un punto de vista práctico. (3) Resolución de ejercicios por parte del alumno que les servirán para autoevaluar sus conocimientos y adquirir las capacidades necesarias. (4) Desarrollo de trabajos prácticos. Elaboración de informes presentando los resultados obtenidos utilizando software informático. Se valorará la capacidad del alumno de presentar de forma clara y concisa los resultados, así como su discusión.
Sistema de evaluación
  • Peso porcentual del Examen Final 50
  • Peso porcentual del resto de la evaluación 50
Bibliografía básica
  • CSN. Las Centrales Nucleares Españolas. Consejo de Seguridad Nuclear. 1999
  • Günter Kessler. Sustainable and Safe Nuclear Fission Energy. Technology and Safety of Fast and Thermal Nuclear Reactors. Springer. 2012
  • Igor L. Pioro. Handbook of Generation IV Nuclear Reactors. Elsevier. 2016
  • M.D. Carelli, D.T. Ingersoll. Handbook of Small Modular Nuclear Reactors. Elsevier. 2015
  • MIT. The Future of Nuclear Power. Massachusetts Institute of Technology. 2003
  • R.E. Masterson. Nuclear Engineering Fundamentals: A Practical Perspective. CRC Press. 2017
  • Raymond L. Murray. Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes. 6th ed. . Butterworth-Heinemann-Elsevier. 2009

El programa de la asignatura y la planificación semanal podrían sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.