Última actualización: 25/01/2019


Curso Académico: 2018/2019

Métodos numéricos en biomedicina
(15543)
Titulación: Grado en Ingeniería Biomédica (257)


Coordinador/a: SECO FORSNACKE, DANIEL

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:




Materias que se recomienda haber superado
Cálculo I, Cálculo II, Álgebra Lineal, Ecuaciones Diferenciales, Programación.
Competencias que adquiere el estudiante y resultados del aprendizaje.Más información en este enlace
Usar MÉTODOS NUMÉRICOS (MN) para obtener soluciones aproximadas en problemas de modelado de sistemas fisiológicos, celulares y moleculares. Estudiar la estabilidad y precisión de los MN. Calcular numéricamente la solución de sistemas de ecuaciones no lineales. Obtener una aproximación al mínimo de una función de varias variables. Desarrollar, analizar e implementar métodos en diferencias finitas. Resolver ecuaciones diferenciales ordinarias y sistemas mediante métodos de integración numérica. Usar paquetes informáticos para analizar la eficiencia, ventajas y desventajas de los distintos MN.
Descripción de contenidos: Programa
PROGRAMA 1- PRINCIPIOS BÁSICOS DE LA MATEMÁTICA NUMÉRICA. Problemas Bien Planteados y Número de Condición Estabilidad de los Métodos Numéricos. El Sistema de Números en Coma Flotante. 2- RESOLUCIÓN DE ECUACIONES NO LINEALES. Condicionamiento de una Ecuación No Lineal. El Método de Newton-Raphson. Método de Newton para Sistemas de Ecuaciones No Lineales. 3- Optimización sin Restricciones. Condiciones Necesarias y Suficientes para la Optimalidad. Convexidad. Métodos de optimización. 4- MÉTODOS EN DIFERENCIAS FINITAS: INTERPOLACIÓN, DIFERENCIACIÓN E INTEGRACIÓN. Diferencias Regresivas, Progresivas y Centrales. Métodos de interpolación y extrapolación. 5- SOLUCIONES NUMÉRICAS A ECUACIONES DIFERENCIALES ORDINARIAS (EDOs). EDOS y la Condición de Lipschitz. Métodos Numéricos a un Paso. Cero-Estabilidad, Análisis de Convergencia y Estabilidad Absoluta. Consistencia. Métodos numéricos de resolución de EDOs. Sistemas de EDOs. 6- Teoría de la Aproximación. Transformada de Fourier.
Actividades formativas, metodología a utilizar y régimen de tutorías
Uno de los propósitos del curso es dar a conocer los fundamentos matemáticos de los métodos numéricos, analizar sus propiedades teóricas básicas (estabilidad, precisión, complejidad computacional) y demostrar su capacidad mediante ejemplos y contraejemplos que pongan de manifiesto sus ventajas y desventajas. El objetivo primordial es que el estudiante sea capaz de desarrollar algoritmos y tenga claros los conceptos computacionales básicos. Cada capítulo contiene ejemplos, ejercicios y aplicaciones de las nociones teóricas desarrolladas. El curso se sustenta así mismo sobre rutinas numéricas de las que se incluyen códigos informáticos. Los estudiantes deberán diseñar sus propios códigos estudiando y modificando los códigos subidos por el/la profesor/a a Aula Global. Los códigos desarrollados por los estudiantes deben ser ejecutados, comprobados y entregados a través de Aula Global en las clases prácticas en el aula de informática. A lo largo del curso se enfatizará la representación gráfica en 2D y 3D de las soluciones. Esto permitirá a los estudiantes desarrollar un conocimiento más intuitivo de los resultados, es decir, comprender mejor el significado y comportamiento de la solución.
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Bibliografía básica
  • [A] K. Atkinson. Elementary Numerical Analysis. John Wiley & Sons. 2004
  • [A] K. Atkinson. Elementary Numerical Analysis. John Wiley & Sons. 2004
  • [BC] A. Belegundu and T. Chandrupatla. Optimization Concepts and Applications in Engineering. Cambridge University Press, Second Edition. 2011.. 2011
  • [BF] R. L. Burden, J. D. Faires . Numerical Methods. Brooks/Cole, Cengage Learning,. 2003
  • [DCM] S. Dunn, A. Constantinides and P. Moghe. Numerical Methods in Biomedical Engineering. Elsevier Academic Press. 2010
  • [DH] Peter Deuflhard and Andreas Hohmann. Numerical Analysis in Modern Scientific Computing. An Introduction. Second Edition.. Springer. 2003
  • [FJNT] P.E. Frandsen, K. Jonasson, H.B. Nielsen, O. Tingleff. Unconstrained Optimization. IMM, DTU. 1999
  • [QSG] A. Quarteroni, F. Saleri and P. Gervasio. Scientific computing with MATLAB and Octave. Springer. 2010
  • [QSS] A. Quarteroni, R. Sacco and F. Saleri. Numerical Mathematics. Springer. 2007
  • [T] Lloyd N. Trefethen. Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations. freely available online. 1996
Bibliografía complementaria
  • [HH] D. Higham and N. Higham. Matlab Guide. Second Edition. . 2005.
  • [K] C. Kelley. Iterative Methods for Optimization. SIAM. 1999.

El programa de la asignatura y la planificación semanal podrían sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.