Checking date: 16/04/2024

Course: 2024/2025

Linear Algebra
(15527)
Bachelor in Biomedical Engineering (Plan: 419 - Estudio: 257)

Coordinating teacher: MOLERA MOLERA, JUAN MANUEL

Department assigned to the subject: Mathematics Department

Type: Basic Core
ECTS Credits: 6.0 ECTS

Course:
Semester:

Branch of knowledge: Engineering and Architecture

Objectives
The student is expected to know and understand the fundamental concepts of: - Systems of linear equations - Matrix and vector algebra. - Vector subspaces in R^n. The student is expected to acquire and develop the ability to: - Operate and solve equations with complex numbers - Discuss the existence and uniqueness of solutions of a system of linear equations - Solve a consistent system of linear equations - Carry out basic operations with vectors and matrices - Determine whether a square matrix is invertible or not, and compute the inverse matrix if it exists - Determine whether a subset of a vector space is a subspace or not - Find bases of a vector subspace, and compute change-of-basis matrices - Compute eigenvalues and eigenvectors of a square matrix - Determine whether a square matrix is diagonalizable or not - Obtain an orthonormal basis from an arbitrary basis of a subspace - Solve least-squares problems - Determine whether a square matrix is orthogonally diagonalizable or not
Skills and learning outcomes
RA1: Acquire knowledge and understanding of the basic general fundamentals of engineering and biomedical sciences. RA2: Be able to solve basic engineering and biomedical science problems through a process of analysis, identifying the problem, establishing different methods of resolution, selecting the most appropriate one and its correct implementation. CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG1: Adequate knowledge and skills to analyse and synthesise basic problems related to engineering and biomedical sciences, solve them and communicate them efficiently. CG3: Knowledge of basic scientific and technical subjects that enables them to learn new methods and technologies, as well as providing them with great versatility to adapt to new situations. CG4: Ability to solve problems with initiative, decision-making, creativity, and to communicate and transmit knowledge, skills and abilities, understanding the ethical, social and professional responsibility of the biomedical engineer's activity. Capacity for leadership, innovation and entrepreneurial spirit. CG8: Ability to solve mathematical, physical, chemical and biochemical problems that may arise in biomedical engineering. CG12: Ability to solve mathematically formulated problems applied to biology, physics and chemistry, using numerical algorithms and computational techniques. ECRT1: Ability to solve mathematical problems that may arise in engineering and biomedicine. Ability to apply knowledge of: linear algebra; geometry; differential and integral calculus; differential and partial derivative equations; numerical methods; numerical algorithms; statistics and optimisation. CT1: Ability to communicate knowledge orally and in writing to both specialised and non-specialised audiences.
Description of contents: programme
1. Complex numbers 2. Systems of linear equations 3. Matrix algebra 4. Vector spaces 5. Linear transformations 6. Inner product and Orthogonality 7. Least-Squares Problems 8. Eigenvalues and eigenvectors 9. Orthogonal and unitary diagonalization 10. Singular value decomposition
Learning activities and methodology
The teaching methodology will include: - Theoretical lectures in large groups, where knowledge that students should acquire will be presented. The course weekly schedule will be available to students and they are expected to prepare the classes in advance. - Resolution of exercises by the student, which will serve them as a self-assessment and to acquire the necessary skills - Problem classes, during which problems are discussed and solved - Tutorships
Assessment System
• % end-of-term-examination 60
• % of continuous assessment (assigments, laboratory, practicals...) 40

Calendar of Continuous assessment

Extraordinary call: regulations
Basic Bibliography
• David C. Lay,. Linear Algebra and its Applications,. Addison Wesley.
• W. Keith Nicholson. Linear Algebra with Applications. McGraw Hill. 2009 (6th edition)
Electronic Resources *