Última actualización: 24/09/2022


Curso Académico: 2022/2023

Álgebra Lineal
(15527)
Titulación: Grado en Ingeniería Biomédica (257)


Coordinador/a: SANCHEZ SANCHEZ, ANGEL

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación Básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Objetivos
El estudiante deberá conocer y entender los conceptos fundamentales de: - Los sistemas de ecuaciones lineales. - El álgebra de matrices y vectores. - Los subespacios vectoriales en R^n. El alumno deberá adquirir y desarrollar la capacidad de: - Operar y resolver ecuaciones con números complejos - Discutir la existencia y unicidad de las soluciones de un sistema de ecuaciones lineales. - Resolver un sistema de ecuaciones lineales compatible. - Realizar operaciones básicas con vectores y matrices. - Determinar si una matriz cuadrada es invertible o no, y calcular la matriz inversa si ésta existe. - Determinar si un subconjunto de un espacio vectorial es un subespacio o no. - Encontrar bases de un subespacio vectorial, y calcular matrices de cambio de base. - Calcular los valores y vectores propios de una matriz cuadrada. - Determinar si una matriz cuadrada es diagonalizable o no. - Obtener una base ortonormal a partir de una base arbitraria de un subespacio. - Resolver problemas de mínimos cuadrados. - Determinar si una matriz cuadrada es diagonalizable ortogonalmente o no.
Competencias y resultados del aprendizaje
Descripción de contenidos: Programa
1. Números complejos · Conjuntos de números · Necesidad de los números complejos · Forma binomial de los números complejos · Representación gráfica · Operaciones · Conjugado, módulo y argumento · Forma polar de un número complejo · Raíces de números complejos · Exponencial de un número complejo · Resolución de ecuaciones 2. Sistemas de ecuaciones lineales · Introducción a los sistemas lineales · Interpretación geometrica · Existencia y unicidad · Notación matricial · Eliminación gaussiana · Equivalencia por filas, forma escalonada · Resolución de sistemas lineales · Sistemas homogéneos · Resolución simultánea · Sistemas con parámetros 3. Álgebra matricial · Operaciones con matrices · Transpuesta de una matriz · Inversa de una matriz 4. El espacio vectorial Rn · Vectores · Subespacios vectoriales · Combinaciones lineales · Subespacio generado por un conjunto · Espacio de columnas y de filas · La ecuación matricial Ax=b · Espacio nulo · Revisitando los sistemas lineales · Independencia lineal · Base de un subespacio vectorial · Dimensión de un subespacio vectorial · Bases de Col A, Fil A y Nul A · Rango de una matriz · Sistemas de coordenadas · Introducción a las transformaciones lineales 5. Valores y vectores propios . Determinantes · Vectores y valores propios · La ecuación característica · Diagonalización 6. Ortogonalidad · Producto escalar y módulo · Conjuntos ortogonales · Complemento ortogonal · Proyecciones ortogonales · El proceso Gram-Schmidt · Problemas de mínimos cuadrados 7. Matrices simétricas · Matrices simétricas y Diagonalización ortogonal
Actividades formativas, metodología a utilizar y régimen de tutorías
La metodología docente incluirá: - Clases magistrales, donde se presentarán los conocimientos que los alumnos deben adquirir. Los alumnos recibirán el cronograma del curso y deberán preparar las clases con antelación. - Resolución de ejercicios por parte del alumno, que le servirá de autoevaluación y para adquirir las capacidades necesarias - Clases de problemas, en las que se desarrollen y discutan los problemas que se proponen a los alumnos - Tutorías
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Bibliografía básica
  • David C. Lay,. Linear Algebra and its Applications,. Addison Wesley.
Recursos electrónicosRecursos Electrónicos *
Bibliografía complementaria
  • B. Noble and J. W. Daniel. Applied Linear Algebra. Prentice Hall.
  • David Poole. Linear Algebra: A Modern Introduction. Cengage Learning. 2010 (3rd Edition)
  • G. Strang. Linear Algebra and its Applications, 4th Edition. Wellesley-Cambridge.
  • Jim DeFranza, Daniel Gagliardi. Introduction to Linear Algebra with Applications. McGraw Hill. 2009
  • W. Keith Nicholson. Linear Algebra with Applications. McGraw Hill. 2009 (6th edition)
Recursos electrónicosRecursos Electrónicos *
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.