Checking date: 04/06/2021

Course: 2021/2022

Computational Biology
Study: Bachelor in Biomedical Engineering (257)

Coordinating teacher: JORCANO NOVAL, JOSE LUIS

Department assigned to the subject: Department of Bioengineering and Aerospace Engineering

Type: Compulsory
ECTS Credits: 6.0 ECTS


Requirements (Subjects that are assumed to be known)
It is strongly advised to have knowledge in programming, fundamentals of molecular and cellular Biology and/or Biochemistry.
The student will acquire the ability to apply different computational techniques to solve complex problems typical of biology and medicine. Such problems are characterized by involving the analysis of large quantities of information (data base searching, comparative analysis of sequences of DNA, RNA, microRNA and protein, domain searching, evaluation of the pathogenicity of variants, evolutionary conservation, phylogeny .. ), so that in practice only they are approachable through intensive computing techniques, in which the student is formed.
Skills and learning outcomes
Description of contents: programme
Topics covered include: 1. Computational approaches and techniques for searching sequence, structural and expression databases and its relationship with disease databases. 2. Alignment and comparison of sequences by using dynamic programming. 3. Gene structure prediction 4. Obtaining the protein sequence encoded 5. Folding and protein structure prediction 6. Prediction of functional and protein-binding domains 7. Molecular evolution and phylogenetic sequences analysis. 8. Linkage analysis, physical maps and identification of the disease-causing gene. 9. Genome structure analysis, repetitive sequence searching and microRNAs. 10. Evaluation of the pathogenicity of disease variants. 11. Search for restriction sites and generation of recombinant vectors in silico Different examples will be reviewed in different areas and students make use of computational biology tools for analysis.
Learning activities and methodology
The teaching will be on line through the platform Blackboard collaborate and it will include: -On line lectures, which will present the skills that students should acquire and the bioinformatic tools to be used. To facilitate its development students will receive class notes and baseline texts that facilitates follow lessons and develop further work. Resolution of representative exercises will be included. -On line practices in computer lab for the resolution of exercises by means of bioinformatic tools. -In-person classes for doubts resolution, tutorials and carrying out of the continuos evaluation exams.
Assessment System
  • % end-of-term-examination 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40
Basic Bibliography
  • - Lesk, A.M.. Introduction to BioInformatics. Oxford University Press. Third Edition
  • - Mount, DW. Bioinformatics, Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press. Second Edition

The course syllabus may change due academic events or other reasons.