Checking date: 05/08/2020

Course: 2020/2021

Thermal system design
Study: Bachelor in Industrial Technologies Engineering (256)

Coordinating teacher: SANCHEZ GONZALEZ, ALBERTO

Department assigned to the subject: Department of Thermal and Fluids Engineering

Type: Electives
ECTS Credits: 6.0 ECTS


Students are expected to have completed
Thermal Engineering (Thermodynamics) Heat Transfer Engineering Fluidmechanics
Competences and skills that will be acquired and learning results. Further information on this link
This course is devoted to the design of HVAC systems to produce heat and cold in buildings and industry. At the end of the course, students will be able to: - Know the principles of heating and cooling equipment for buildings and industry. - Apply the knowledge to the sizing of thermal systems, using established methods. - Use software applicat6ions for building energy simulation and thermal systems. - Design HVAC systems and buildings to minimize energy consumption. - Consult and comply with current regulations and standards in thermal systems and energy in buildings. - Size and select the equipment, according to criteria of efficiency, security, quality, cost, environmental awareness. - Develop and show investigations and projects HVAC facilities. - Understand the relationship between buildings, energy consumption and environmental impact. - Collaborate with associated professionals within multidisciplinary teams.
Description of contents: programme
1. Refrigeration and Heat Generation Vapor compression cycle. Refrigerants. Coefficient of performance (COP). Components: compressor, condenser, evaporator. Heat pumps. Low-temperature geothermal energy. Boilers and furnaces: natural gas, fuel-oil, biomass, electric. District heating. Combined heat and power (CHP). Integration of renewable energy systems. Solar cooling (absorption machine). Evaporative cooling. 2. Energy in Buildings Building energy use, environmental impact and sustainability. Energy sources, primary/final energy, CO2 emissions. Regulations and standards. Código Técnico de la Edificación, documento básico de Ahorro de Energía (CTE HE). European energy performance of buildings directive (EPBD), energy certification of new and existing buildings, energy label, nearly zero energy buildings (nZEB). Reglamento de instalaciones térmicas en los edificios (RITE). Energy audit. 3. Thermal Loads Outdoor design conditions, climatic zones, typical meteorological year (TMY). Indoor comfort conditions, air quality, ventilation (CTE-HS3). Hygrometry, psychrometric chart. Heat transfer through building envelope. Materials, thermal insulation, and constructions. Overal heat transfer coefficient, U-value. Passive heating and cooling, bioclimatic design. Fenestrations, glazings, shadings, solar heat gains. Heating and cooling loads. Internal loads. Sensible and latent heat. Selection of equipment. 4. HVAC Systems Applications in buildings, industry, and transport. Heating, ventilating, air conditioning and refrigeration systems (HVAC). Service hot water (SHW). Thermal storage. Transport and distribution of energy. Centralized vs. decentralized systems, zoning. Terminal elements. Air-and-water systems, fan-coils. All-water systems: pumps, pipes, radiators, radiant panels. All-air systems: air handling unit (AHU), fans, ducts, diffusors. Sizing.
Learning activities and methodology
The learning methodology includes: - Magistral lectures, in which the course contents are presented. - Problems¿ lectures, in which examples are solved. - Workshops, where students work on their individual projects. - Four lab sessions, where students learn practical aspects and the use of computer tools: 1. Simulation of energy demand: compliance with CTE HE1. 2. Calculation of thermal loads, according to CTE HE2 (RITE). 3. Building energy performance certificate (label): compliance with CTE HE0. 4. Visit to an efficient building: access to thermal systems.
Assessment System
  • % end-of-term-examination 20
  • % of continuous assessment (assigments, laboratory, practicals...) 80
Basic Bibliography
  • A.L. Miranda. Manual de aire acondicionado Carrier. Marcombo. 2017
  • Ana María Díez et al.. Manual práctico de climatización en edificios. Paraninfo. 2018
  • Enrique Torrella Alcaraz. Manual de climatización. A. Madrid Vicente. 2005
  • Fco Javier Rey Martínez, Eloy Velasco. Bombas de calor y energías renovables en los edificios. Paraninfo. 2005
  • Francisco Javier Rey Martínez, Eloy Velasco, Javier María Rey Hernández. Eficiencia energética de los edificios. Certificación energética. Paraninfo. 2018
  • José Manuel Pinazo Ojer. Fundamentos de climatización. ATECYR. 2019
Recursos electrónicosElectronic Resources *
Additional Bibliography
  • . ASHRAE Fundamentals (SI Edition). ASHRAE.
  • Doug Oughton, Steve Hodkinson.. Faber & Kell's Heating & Air-conditioning of Buildings. Elsevier. 2008
  • F.C. McQuiston, J.D. Parker, J.D. Spitler. . Heating, Ventilating, and Air Conditioning: Analysis and Design. John Wiley & Sons. 2005
  • G.F. Hundy, A.R. Trott, T.C. Welch.. Refrigeration and Air-Conditioning. Elsevier. 2008
  • Paul Tymkow. Building Services Design for Energy Efficient Buildings. Routledge. 2013
  • Robert McDowall.. Fundamentals of HVAC Systems. Elsevier. 2007
  • T.A. Reddy, J.F. Kreider, P.S. Curtiss, A. Rabl. . Heating and Cooling of Buildings: Design for Efficiency. Taylor & Francis. 2010
  • W.T. Grondzik. . Air-conditioning System Design Manual. ASHRAE. 2007
Recursos electrónicosElectronic Resources *
(*) Access to some electronic resources may be restricted to members of the university community and require validation through Campus Global. If you try to connect from outside of the University you will need to set up a VPN

The course syllabus and the academic weekly planning may change due academic events or other reasons.