Checking date: 29/07/2020

Course: 2020/2021

Machine Mechanics
Study: Bachelor in Industrial Technologies Engineering (256)

Coordinating teacher: RUBIO HERRERO, PATRICIA

Department assigned to the subject: Department of Mechanical Engineering

Type: Compulsory
ECTS Credits: 6.0 ECTS


Branch of knowledge: Engineering and Architecture

Students are expected to have completed
Physics I Calculus I Calculus II Linear Algebra
Competences and skills that will be acquired and learning results. Further information on this link
By the end of this subject, students will be able to have: 1. The knowledge and understanding of the fundamentals of kinematic and dynamic of the rigid body and machines theory and mechanisms. 2. The ability to apply their knowledge and understanding to identify, formulate and solve problems of kinematics and dynamics of the rigid solid and mechanisms and simple machines using established methods. 3. The ability to design and perform experiments on machine theory and mechanisms, analyse the data and draw conclusions. 4. The technical and laboratory skills in machine theory and mechanisms. 5. The ability to select and use appropriate equipment, tools and methods to solve problems of kinematics and dynamics of rhe rigid body, mechanisms and simple machines. 6. The ability to combine theory and practice to solve problems of kinematics and dynamics of rigid body, mechanisms and simple machines 7. The understanding of methods and techniques applicable in machine theory and mechanisms and their limitations.
Description of contents: programme
11. Introduction to Mechanics. Static. Kinematics of the point. Systems of Units 1.1. Mechanics 1.2. Basics 1.3. The particle and rigid body 1.4. Static 1.5. Point Kinematics 1.6. Speed Concept 1.7. Acceleration Concept 1.8. System Units 2. Kinematics of rigid bodies 2.1. Orthonormal basis of a scalar dependent 2.2. Movement of the Rigid Solid 2.3. Instantaneous axis of rotation 2.4. Intrinsic component of acceleration 2.5. Acceleration of Rigid Solid 2.6. Movement Absolute, Relative and Drag 2.7. Speed relative motion 2.8. Acceleration in relative motion 2.9. Euler Angles 3. Dynamics of rigid 3.1. Newton's Laws 3.2. No Inertial Reference Systems 3.3. Inertia Forces 3.4. Momentum 3.5. Angular momentum 3.6. Theorem of angular momentum 3.7. Motion of a rigid body with a fixed point 3.8. Gyroscopic motion 3.9. Motion of a rigid body with a fixed axis 3.10. Equation of Motion 3.11. Calculation of reactions 3.12. Balancing of shafts 4. Mechanisms Plans 4.1. Introduction 4.2. Component parts of a mechanism 4.3. Mobility mechanisms 4.4. Four-bar linkage 4.5. Determining the relative CIR 5. Kinematics of Planar Mechanisms 5.1. Determination of rates members of a mechanism 5.2. Determination of members of an acceleration mechanism 5.3. Value of accelerations and velocities of points of kinematic pairs 5.4. Polar diagram of velocities 5.5. Polar diagram of accelerations 6. Dynamics of Planar Mechanisms 6.1. Introduction 6.2. Kineto-static analysis of planar mechanisms 6.3. Static Analysis 6.4 Theorem of virtual works 6.5. Analysis of Inertia Forces 6.6. Full Dynamic Analysis 7. Energy and Power 7.1. Work and power 7.2. Kinetic energy. Theorem of the prime movers 7.3. Potential energy 7.4. Energy Conservation 7.5. Friction Forces 7.6. Mechanical Performance
Learning activities and methodology
Master class, classroom exercises and / or laboratories and work.
Assessment System
  • % end-of-term-examination 50
  • % of continuous assessment (assigments, laboratory, practicals...) 50
Basic Bibliography
  • Agulló Batlle. Mecánica de la partícula y del sólido rígido. Publicaciones OK Punt. 1996
  • Bedford y W. Fowler. Mecánica para Ingeniería. Addison-Wesley. 1996
  • Beer y Johnston. Mecánica vectorial. Mc Graw Hill. 2010
  • I.H. Shames. Mecánica para ingenieros. Dinámica. Prentice Hall. 1999
  • J.C. García-Prada, C. Castejón y H. Rubio. Problemas resueltos de Teoría de Máquinas y Mecanismos. Thomson-Paraninfo. 2007
  • M. Artés. Mecánica. UNED. 2003
  • M. Vázquez y E. López. Mecánica para ingenieros. Noelas. 1998
  • McGill y King. Mecánica para ingeniería y sus aplicaciones. MC Graw Hill. 1990
  • R. Calero. Fundamentos de mecanismos y máquinas para ingenieros. E.T.S.I.I. Las Palmas de Gran Canaria. 1995
  • Simón, Bataller,Guerra y Cabrero. Fundamentos de Teoría de Máquinas. Ed. Técnicas y Científicas. 2000
  • W.F. Riley y L.D. Sturges. Estática y Dinámica. Reverté. 1996
Additional Bibliography
  • A. Lamadrid y A. Corral. Cinemática y dinámica de máquinas. E.T.S.I.I. UPM . 1969
  • A.G. Erdman y G.N. Sandor. Diseño de mecanismos. Análisis y síntesis. Prentice Hall. 1998
  • C. F. González Fernández. Mecánica del sólido rígido. Ariel. 2003
  • D.J. Mc Gill. Mecánica para ingeniería y sus aplicaciones (Dinámica). Grupo editorial iberoamericana. 1991
  • J.E. Shigley. Teoría de máquinas y mecanismos. McGraw Hill. 1988
  • Spiegel y Murray. Teoría y problemas de mecánica teórica. Mc Graw Hill. 1991

The course syllabus and the academic weekly planning may change due academic events or other reasons.