Checking date: 28/03/2023

Course: 2023/2024

Transmission and distribution of energy
Bachelor in Industrial Technologies Engineering (Plan: 418 - Estudio: 256)

Coordinating teacher: LEDESMA LARREA, PABLO

Department assigned to the subject: Electrical Engineering Department

Type: Electives
ECTS Credits: 6.0 ECTS


Requirements (Subjects that are assumed to be known)
Solution of AC electrical circuits using phasors (e.g. Electrical Power Engineering Fundamentals in UC3M)
By the end of the term, students will be able to: 1. Know and understand the scientific and mathematical principles underlying the analysis and design of power systems. 2. Understand the key aspects and concepts of power system operation. 3. Identify, formulate and solve practical problems in power systems. 4. Plan power systems to meet specific requirements. 5. Develop practical computer skills by applying software tools to the analysis of power systems. 6. Combine theory and practice to solve practical problems in power systems.
Skills and learning outcomes
CB1. Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study CB2. Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CB3. Students have the ability to gather and interpret relevant data (usually within their field of study) in order to make judgements which include reflection on relevant social, scientific or ethical issues. CB5. Students will have developed the learning skills necessary to undertake further study with a high degree of autonomy. CG1. Ability to solve problems with initiative, decision-making, creativity, critical reasoning and to communicate and transmit knowledge, skills and abilities in the field of Industrial Engineering. CG3. Ability to design a system, component or process in the field of Industrial Technologies to meet the required specifications CG4. Knowledge and ability to apply current legislation as well as the specifications, regulations and mandatory standards in the field of Industrial Engineering. CG5. Adequate knowledge of the concept of company, institutional and legal framework of the company. Organisation and management of companies. CG6. Applied knowledge of company organisation. CG8. Knowledge and ability to apply quality principles and methods. CG9. Knowledge and ability to apply computational and experimental tools for the analysis and quantification of Industrial Engineering problems. RA1. Knowledge and understanding: Have basic knowledge and understanding of science, mathematics and engineering within the industrial field, as well as knowledge and understanding of Mechanics, Solid and Structural Mechanics, Thermal Engineering, Fluid Mechanics, Production Systems, Electronics and Automation, Industrial Organisation and Electrical Engineering. RA2. Engineering Analysis: To be able to identify engineering problems within the industrial field, recognise specifications, establish different resolution methods and select the most appropriate one for their solution
Description of contents: programme
Transmission and distribution grids Transmission voltages Meshed and radial grids Power quality Basic mathematical models of lines, transformers, loads and generators Per unit quantities Power lines Mathematical models of a line Power flow and voltages in a line Conductors Insulators Pylons Corona effect The power flow problem Power flow equations Newton-Raphson method Modified N-R methods Voltage control Shunt-connected reactors and capacitors Automatic voltage regulation in power plants Tap changer transformers Ferranti effect Voltage control in a transmission system Voltage control in a distribution system Substations Disconnectors Circuit breakers Substation configurations Frequency control Primary regulation Secondary regulation Tertiary regulation Time control Protection systems Contingency analysis Characteristics of a protection system Short circuit current Fault clearing time and transient stability Emerging technologies in power systems Energy load management Electric vehicles Smart meters Smart grid
Learning activities and methodology
Half the time is dedicated to practical sessions in a computer laboratory, most of them with software PSSE. PSSE is used by the Spanish Transmission System Operator and by many electrical utilities to simulate the electrical network. Also: Theoretical classes Solution of practical problems in class Individual tutorial sessions
Assessment System
  • % end-of-term-examination 0
  • % of continuous assessment (assigments, laboratory, practicals...) 100
Calendar of Continuous assessment
Basic Bibliography
  • Grainger, Stevenson. Power System Analysis. McGraw-Hill.
  • P. Kundur. Power System Stability and Control. EPRI.
  • Pieter Schavemaker; Lou van der Sluis. Electrical Power System Essentials. John Wiley & Sons. 2008
Recursos electrónicosElectronic Resources *
(*) Access to some electronic resources may be restricted to members of the university community and require validation through Campus Global. If you try to connect from outside of the University you will need to set up a VPN

The course syllabus may change due academic events or other reasons.