Checking date: 29/05/2019


Course: 2019/2020

Mechanics of Structures
(15504)
Study: Bachelor in Industrial Technologies Engineering (256)


Coordinating teacher: SANCHEZ SAEZ, SONIA

Department assigned to the subject: Department of Continuum Mechanics and Structural Analysis

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Competences and skills that will be acquired and learning results. Further information on this link
Knowledge and basic techniques of Solids Mechanics Knowledge and application of principles of Strength of Materials Theoretical and practical bases for lineal calculus of isostatic systems Capacity of analysis and evaluation with critical sense of results of structural calculus
Description of contents: programme
I: BEHAVIOUR OF REAL BODY EQUILIBRIUM AND CALCULUS OF REACTIONS FOR STRUCTURAL MECHANICS Topic 1: FORCE SYSTEMS AND EQUILIBRIUM 1.1 Main concepts 1.2 Force systems and equivalent force systems Topic 2: REACTIONS FORCES 2.1 Computation of reactions in statically determinate structures 2.2 Computation of reactions in statically indeterminate externally structures Topic 3: MASS GEOMETRY 3.1 Centre of mass of planar bodies 3.2 Moment of inertia of planar bodies II: FORCE LAWS IN ISOSTATIC STRUCTURES Topic 4: FORCE LAWS (I) 4.1 Concept and types of internal forces 4.2 Relationship between load, shear force and bending moment Topic 5: FORCE LAWS (II) 5.1 Determination of internal forces in simple beams 5.2 Determination of internal forces in archs Topic 6: FORCE LAWS (III) 6.1 Determination of internal forces for complex beams 6.2 Determination of internal forces for frames III: TRUSS STRUCTURES AND CABLE STRUCTURES Topic 7: TRUSSES 7.1 Internal forces for trusses 7.2 Resolution procedures Topic 8: CABLES 8.1 Cables under concentrated loads 8.2 Cables under distributed loads IV: CONCEPT OF UNIAXIAL STRESS AND UNIAXIAL STRAIN RELATIONSHIP BETWEEN STRESS AND STRAIN IN ELASTIC SOLIDS Topic 9: DEFORMABLE BODY 9.1 Main concepts. Cauchy stress 9.2 Mechanical behaviour of solids V: PRINCIPLES OF STRENGHT OF MATERIALS. GENERAL STUDY OF STRUCTURAL BEHAVIOUR OF SECTION STRENGTH Topic 10: TENSILE/COMPRESSION (I) 10.1 Principles of strenght of materials 10.2 Tensile and compressive axial force Topic 11: BENDING (II) 11.1 Strength of materials. Bending (I) 11.2 Pure bending Topic 12: BENDING (III) 12.1 Strength of materials. Bending (II) 12.2 Complex bending VI: INTRODUCTION TO EXPERIMENTAL METHODS FOR STRUCTURAL MECHANICS ENGINEERING APPLICATIONS 3 Laboratory sessions
Learning activities and methodology
- Master class, sessions of questions resolution in reduced groups, students presentations, individual sessions, and personal student work for theoretical knowledge (3 ECTS). - Practical sessions of laboratory and sessions of problems in reduced groups, individual sessions, and personal student work for practical knowledge (3 ECTS). Additionally, collective tutorship can be included in the programme.
Assessment System
  • % end-of-term-examination 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40
Basic Bibliography
  • F.P. Beer, E. Russel Johnston. Vector Mechanics for Engineers., Vol. Static. McGraw Hill. 1994
  • J. Case. Strength of material and structures. Arnold. 1999
  • J.M. Gere. Mechanics of materials. Ed. Thomson. 2002
  • W.M.C. McKenzie. Examples in structural analysis. Taylor & Francis. 2006

The course syllabus and the academic weekly planning may change due academic events or other reasons.