Checking date: 26/04/2024


Course: 2024/2025

Electronics Systems
(15383)
Bachelor in Telecommunication Technologies Engineering (Plan: 445 - Estudio: 252)


Coordinating teacher: PATON ALVAREZ, SUSANA

Department assigned to the subject: Electronic Technology Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Linear Systems, Electronic Components and Circuits
Objectives
The aim of this course is to provide the students with a solid knowledge in a number of key horizontal techniques in electronic systems. During the development of this subject, special emphasis will be placed on the application of these techniques to specific equipment and subsystems commonly used in telecommunications, both for signal processing as well as equipment power supply. To achieve this objective, students will acquire the following specific abilities: - Understand the operation of electronic circuits with negative feedback and their frequency response - Analyse and evaluate the most common oscillator circuits - Understand the functioning of real operational amplifiers and their linear and nonlinear applications - Understand the operation of the most commonly found electronic subsystems used in signal processing and communications such as timers, VCOs and PLLs - Understand the operation and applications of power supplies and power equipment for telecommunication systems In terms of general abilities or skills, the following areas will be worked upon throughout the development of the subject: - Ability to work cooperatively in a team, knowing how to adapt the requirements and working conditions of the subsystem developed so that they operate correctly within a global system which is not only electronic. This aspect will be covered by means of the development of examples and case studies. - Ability to identify, formulate and solve problems in Engineering - Ability to use techniques and tools required in modern engineering to reduce the equipment development time
Skills and learning outcomes
Description of contents: programme
Topic 1. Introduction to Electronic Systems (ES) - ES in communications, computing, measurement and automation, and other commercial and industrial applications. Analog, digital and mixed systems. - Circuit integration platforms and associated tools: CMOS, SoC, SiP, PCBs, and others. - Design cycle and prototype development. Hierarchical design/analysis, from system to circuit. Topic 2. Circuits for analog signal processing. -Amplifiers . Voltage amplifier modeling, and op-amp review as a block . Non idealities of an amplifier -Filters . Active Filters . The Sallen-Key Filter -Comparators . Types of comparators . Comparators with hysteresis Topic 3. Feedback and Stability of amplifiers - Feedback o Basic Concepts of Feedback Theory in Electronics o Topologies of Feedback o Calculation of Gain, Input Impedance, and Output Impedance in a Feedback Circuit According to the Approximate Method o Basic Feedback networks - Stability & Compensation o Frequency Analysis o Study of the stability using the Bode diagram o Compensation by dominant pole Topic 4. Power Systems - Fundamentals in power supplies - Primary sources, energy converters, load stabilization and regulation - Linear voltage regulators . Operation . Efficiency . Protection Circuits - LDOs . Operation and efficiency - Switching voltage regulators . Fundamentals & Types . The buck converter . Operation . Efficiency - Photovoltaic systems - Uninterruptible power supplies or UPSs Topic 5. Signal Generators - Sinusoidal oscillators o General settings of an oscillator. Starting and Maintaining Condition of an Oscillator o RC Oscillators o LC Oscillators and Crystal Oscillators - Pulse Circuits - PLLs & Applications o Basic Circuit o Signal Model o Applications
Learning activities and methodology
The teaching methodology will include:: - 14 Magisterial Classes, where the students will be presented with the basic knowledge they must acquire. Students will be provided with lecture notes and key reference texts, which will enable them to complete and acquire a more in depth knowledge of the subject. - 11 Problems Classes these are aimed at the solving of exercises and examples within the context of real case studies. These classes will be complemented with the resolution of practical exercises on behalf of the student, which in some cases may require the use of computer based simulation programs. - 4 Laboratory Practical Sessions, here the student will design, model and characterise electronic systems within the area of communications and real applications. Group tutorial session. At least, a group tutorial session will be carried out during the recovery week as revision and final exam preparation. (See the weekly schedule for additional details)
Assessment System
  • % end-of-term-examination 40
  • % of continuous assessment (assigments, laboratory, practicals...) 60

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • A. S. SEDRA, K.C. SMITH, T. C. CARUSONE, , V. GALDET. Microelectronic Circuits. Oxford University Press. 8th edition
  • D. JOHNS, K. MARTIN, T. C. CARUSONE. Analog Integrated Circuitt Design. John Wiley and Sons. 2nd edition
  • M. H. RASHID. Microelectronic Circuits: Analysis and Design. CL-Engineering. 2010
  • N. MOHAN. First Course on Power Electronics. MN Power Electronics (MNPERE). 2009

The course syllabus may change due academic events or other reasons.