1. Transversal/Generic (Be capable of...)
- solving mathematical analysis and synthesis problems.
- apply scientific and technical knowledge to practical situations.
- solve problems stated mathematically.
- integrate theoretical knowledge into the solution of problems.
2. Specific
* Cognitive (be capable of stating...)
- deciding and stating the advantages of using mesh or node analysis for a particular network.
- identifying matrices of mesh and node methods and tell whether they belong to reciprocal systems.
- naming and identifying the different types of system functions/transfer functions for stable causal linear networks and the relationships between responses in the Laplace, real frequency and time domains.
- describing part of a network as a two-port.
- name the different types and manifestations of power in a network with two-ports.
- stating the maximal power transfer theorems for generators and loads with and without an interposing two-port.
- state the concept of conjugate matching.
- relating natural and logarithmic power units.
- stating the conditions for a network to be reciprocal and/or symmetrical
- describing the filter synthesis process.
- graphing the analog filter prescription functions in modulus and attenuation.
- stating the difficulties in synthesising an ideal low-pass transfer function.
- stating Approximation Theory for the design of low-pass LC analog filters.
- mathematically describing frequency transforms for high-pass, band-pass and suppressed-band filters.
- state the advantages of working in normalized frequency, impedance, resistance, inductance and capacitance.
- differentially characterizing, wrt the analog version, the transfer function in the Z domain of digital filters both for infinite and finite impulse responses (IIR & FIR)
- stating a discrete-time domain response from a difference equation.
- sketching direct architectures for digital filters.
* Procedural/instrumental (e.g. Be capable of working out...)
- stating and solving analysis equations for linear networks with mesh and node methods both in stationary sinusoidal and in stationary and transient regimes with the unilateral Laplace transform.
- same with two-ports included in them.
- describing two-ports by their impedance, admittance, power transfer and image parameters.
- specifying and synthesising passive low-, high-, bandpass and suppressed band analog filters using the Butterworth and Chebychev approximations.
- specifying and synthesising said filters in the digital case resorting to analog sinthesis.
- simulating analog filters digitally.