Última actualización: 23/05/2025 00:45:03


Curso Académico: 2025/2026

Ampliación de Matemáticas
(15331)
Grado en Ingeniería Aeroespacial (Plan: 421 - Estudio: 251)


Coordinador/a: MARGALEF BENTABOL, JUAN

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación Básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Cálculo I y II, Álgebra Lineal
Objetivos
El objetivo de este curso de ecuaciones diferenciales es proporcionar a los estudiantes un enfoque formal para diversos problemas relacionados con la física y la ingeniería. Los temas tratados a lo largo de la asignatura se aplican comúnmente en varias disciplinas relacionadas con la ingeniería. Por ejemplo, el método de las características junto con la ecuación de ondas se utiliza para modelar las ondas de choque que experimentan las aeronaves al superar la barrera del sonido, o para modelar la onda de presión generada dentro de una tubería cuando se cierra repentinamente una válvula en un líquido en flujo. La ecuación del calor es de interés para modelar y diseñar todo tipo de dispositivos aeroespaciales, como los mapas de motores térmicos o la determinación de las necesidades térmicas en la cabina de una aeronave. La ecuación de Laplace es útil para modelar todo tipo de problemas estacionarios, por ejemplo, para determinar el perfil de velocidad generado por un perfil aerodinámico en un líquido homogéneo como el aire. Además, las ecuaciones diferenciales, tanto ordinarias como parciales, también se utilizan en elasticidad, vibraciones, mecánica de sólidos, circuitos eléctricos y electrónica para modelar distintos aspectos, desde la deformación de un sólido hasta los fenómenos transitorios en un circuito. OBJETIVOS ESPECÍFICOS DE APRENDIZAJE (PO a): - Entender los teoremas básicos sobre existencia y unicidad de soluciones en ecuaciones diferenciales prestando especial atención al concepto de modelo bien planteado. - Entender la importancia de las ecuaciones diferenciales en el campo de la ingeniería aeroespacial. - Entender el empleo de operadores lineales y su relacion con el principio de superposición para resolver ecuaciones diferenciales. - Resolver ecuaciones diferenciales ordinarias empleando las técnicas habituales. - Entender las técnicas de resolución básicas para abordar los problemas no lineales que pueden aparecer en ecuaciones diferenciales. - Resolver ecuaciones diferenciales por separación de variables y otros métodos. - Distinguir entre ecuaciones en derivadas parciales elípticas, parabólicas e hiperbólicas y saber qué condiciones iniciales o de contorno les corresponden. - Entender cómo aplicar separación de variables y el método de Fourier para resolver los problemas de valores iniciales y de contorno para las ecuaciones de la Física Matemática. - Entender el método de las características y cómo usarlo para resolver ecuaciones lineales y semi-lineales de tipo onda. CAPACIDADES ESPECÍFICAS (PO a,k): - Entender qué es una ecuación diferencial ordinaria y saber cómo aplicar técnicas de existencia y unicidad de soluciones junto con las técnicas de resolución en diferentes contextos. - Entender los problemas iniciales y de contorno asociados a ecuaciones diferenciales ordinarias lineales y las principales técnicas analíticas para resolverlos. - Entender qué es una ecuación en derivadas parciales, la clasificación de ecuaciones lineales de segundo orden en derivadas parciales y los problemas de valores iniciales y de contorno asociados a ellas. - Entender la técnica de separación de variables, el papel de los problemas de autovalores resultants, los operadores asociados y el principio de superposición para resolver problemas iniciales y de contorno de las ecuaciones de la Física Matemática. - Entender el método de las características aplicados a distintos casos de ecuaciones en derivadas parciales y su relevancia para el análisis y modelización en distintas areas de la Física Matemática. CAPACIDADES GENERALES (PO a, g, k): - Entender la necesidad de pensamiento abstracto y demostraciones matemáticas formales. - Adquirir habilidades de comunicación en matemáticas. - Adquirir la capacidad de modelar matemáticamente situaciones del mundo real, con la meta de resolver problemas prácticos. - Mejorar las habilidades de resolver problemas.
Resultados del proceso de formación y aprendizaje
CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio. CE.FB1: Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización. RA1: Tener conocimientos básicos y la comprensión de las matemáticas, las ciencias básicas, y la ingeniería dentro del ámbito aeroespacial, incluyendo: el comportamiento de las estructuras; los ciclos termodinámicos y la mecánica de fluidos; el sistema de navegación aérea, el tráfico aéreo, y la coordinación con otros medios de transporte; las fuerzas aerodinámicas; la dinámica del vuelo; los materiales de uso aeroespacial; los procesos de fabricación; las infraestructuras y edificaciones aeroportuarias. Además de un conocimiento y compresión específicos de las tecnologías espeíificas de aeronaves y de aeromotores en cada una de las menciones incluidas en el presente título.
Descripción de contenidos: Programa
1. Introducción 1.1 Modelos básicos; campos de direcciones 1.2 Clasficaciones de las ecuaciones diferenciales 2. Ecuaciones diferenciales de primer orden 2.1 Ecuaciones lineales; factores integrantes 2.2 Ecuaciones separables 2.3 Ecuaciones exactas 3. Ecuaciones lineales de segundo orden 3.1 Definiciones y ejemplos 3.2 Ecuaciones lineales homogéneas 3.3 Ecuaciones homogéneas con coeficientes constantes 3.4 Ecuaciones inhomogéneas: coeficientes indeterminados 3.5 Variación de las constantes 4. Sistemas de ecuaciones lineales de primer orden 4.1 Teoría elemental; ecuaciones de orden superior 4.2 Solución explícita de sistemas lineales no homogéneos 4.3 Sistemas lineales en el plano 5. Sistemas no lineales y estabilidad 5.1 Sistemas no lineales en el plano 5.2 Estabilidad 5.3 Soluciones periódicas 5.4 Dimensiones superiores 6. Ecuaciones diferenciales en derivadas parciales: Introducción 6.1 Ejemplos y derivaciónes físicas 6.1 Tipos de ecuaciones y datos; problemas bien y mal planteados 7. Separación de Variables 7.1 Resolución de problemas mediante separación de variables 7.2 Series trigonométricas de Fourier: propiedades básicas 8. Problemas de contorno 8.1 Problemas de Sturm-Liouville 8.2 Operadores autoadjuntos y espectro 8.3 Cociente de Rayleigh 8.4 Series de Fourier generalizadas
Actividades formativas, metodología a utilizar y régimen de tutorías
Teoría (3 ECTS. PO a,g). Sesiones de problemas de trabajo individual y en grupo (3 ECTS. PO a,g). Se podrán ofrecer tutorías colectivas si el profesor lo considera apropiado.
Sistema de evaluación
  • Peso porcentual del Examen/Prueba Final 60
  • Peso porcentual del resto de la evaluación 40

Calendario de Evaluación Continua


Convocatoria extraordinaria: normativa
Bibliografía básica
  • J. C. Robinson. An Introduction to Ordinary Differential Equations. Cambridge University Press. 2004
  • J.R.Brannan, W.E.Boyce. Differential Equations with Boundary Value Problems: Modern Methods and Applications. Wiley. 2010
  • R. Haberman. Elementary applied partial differential equations. 3rd ed.. Prentice Hall. 1998
Bibliografía complementaria
  • A. N. Tikhonov, A. A. Samarskii. Equations of Mathematical Physics. Dover. 1990
  • B. M. Budak, A. A. Samarskii, A. N. Tíjonov. Problemas de la Física Matemática. 2 vols.. MacGraw Hill y también Mir.
  • C. C. Lin, L.A. Segel . Mathematics applied to deterministic problems in the natural sciences. SIAM (SIAM Classics in Applied Mathematics vol. 1). 1988
  • D.G. Zill. Ecuaciones diferenciales con aplicaciones de modelado, 6a. ed.. Grupo editorial Iberoamérica.
  • G. Strang . Introduction to Applied Mathematics. Wellesley-Cambridge Press. 1986
  • G.F. Simmons. Ecuaciones diferenciales. 2a. ed.. McGraw Hill. 1993
  • H. F. Weinberger. Ecuaciones diferenciales en derivadas parciales. Reverté. 1992
  • K. Bryan. Differential Equations: A Toolbox for Modeling the World. SIMIODE. 2020
  • R. K. Nagle, E. B. Saff, A. D. Snider. . Fundamentals of Differential Equations and Boundary Value Problems.. Pearson. 2018
  • R. L. Burden, J. D. Faires . Análisis numérico. 6a. ed. Int.. Thomson. 1998
  • S. G. Krantz. Differential Equations: Theory, Technique and Practice. Chapman and Hall/CRC Press. 2015
Contenido detallado de la asignatura o información adicional para TFM

El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.