Checking date: 21/01/2025


Course: 2024/2025

Physics II
(15327)
Bachelor in Aerospace Engineering (Plan: 421 - Estudio: 251)


Coordinating teacher: REYNOLDS BARREDO, JOSE MIGUEL

Department assigned to the subject: Physics Department

Type: Basic Core
ECTS Credits: 6.0 ECTS

Course:
Semester:

Branch of knowledge: Engineering and Architecture



Requirements (Subjects that are assumed to be known)
Physics I
Objectives
Competences and skills that will be acquired (PO: a,b d) The goal of this course is the student can understand the physical phenomena involved in electromagnetism as well as in oscillations and waves, both mechanical and electromagnetic. In order to achieve this goal, the following competences and skills have to be acquired - Ability to understand and know basic concepts of electromagnetism and thermodynamics. - Ability to understand and use the mathematics involved in the physical models - Ability to understand and use the scientific method - Ability to understand and use the scientific language - Ability to develop skills to solve problems - Ability to use scientific instruments and analyze experimental data. - Ability to retrieve and analyze information from different sources - Ability to work in a team.
Skills and learning outcomes
CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CE.FB2: Understanding and mastery of the basic concepts of the general laws of mechanics, thermodynamics, fields and waves and electromagnetism and their application to the resolution of engineering problems. RA1: Have basic knowledge and understanding of mathematics, basic sciences, and engineering within the aerospace field, including: behaviour of structures; thermodynamic cycles and fluid mechanics; the air navigation system, air traffic, and coordination with other means of transport; aerodynamic forces; flight dynamics; materials for aerospace use; manufacturing processes; airport infrastructures and buildings. In addition to a specific knowledge and understanding of the specific aircraft and aero-engine technologies in each of the subjects included in this degree.
Description of contents: programme
1. Basic concepts of Thermodynamics Temperature. Thermodynamical variables. Work. 2. First Law of Thermodynamics. Heat Transfer. 3. Second Law of Thermodynamics. Entropy. 4. Electrostatics in vacuum. Coulomb's law. Superposition principle. Electric field created by a point change and a continuous distribution of charge. Gauss' law. Sources of the electric field. Electric potential. Electrostatic energy. 5. Conductors y Capacitors. Conductors. Conductors in equilibrium. Cavities. Electrostatic shielding. Capacitors. Capacitance. Association of capacitors. Capacitors and dielectrics. 6. Electric current. Electric circuits. Current density and current intensity. Ohm's law. Resistance and conductivity. Joule's law. Association of resistances. Electromotive force. 7. Magnetostatics in vacuum. Force between currents. Magnetic field. Lorentz force. Motion of a charge in a magnetic field. Magnetic flux. Sources of the magnetic field. Ampere's law. Magnetic energy. 8. Magnetic induction. Faraday's law. Lenz's law. 9. Introduction to magnetic materials. Diamagnetism. Paramagnetism. Ferromagnetism.
Learning activities and methodology
Lectures where the theoretical concepts are explained (PO: a) The lecturer will provide the following information (1 week in advance) - Notes describing the main topics to be discussed during the theoretical session - Chapters/sections in each of the text books provided in the bibliography were the studend can read about these topics Activities in groups (~ 40 students dividen in 2-3 people groups) to solve problems (PO: a, d). The main skills to be developed in these activities are: - To understand the statement of the problem (for instance drawing an scheme that summarizes the statement) - To identify the physical phenomenon involved in the statement and the physical laws related to it. - To develop a strategy to reach the objective (for instance breaking the problem in small subproblems). - To be careful in the use of mathematics - To analyze the reasonability of the result (is the final number reasonable?, are the dimensions consistent?) Small works focused to the search of scientific information in different sources (mainly internet). (PO: a,d) Laboratoy sessions (~ 24 students dividen in 2 people groups). (PO:b, d) The main skills to be developed in this activity are: - To understand that physics is an experimental science and they can reproduce the laws that have been theoretically explained in the lectures. - To use scientific instruments and to be careful in its operation - To be careful in the acquisiton of the experimental data. - To learn the basis of the management of a scientific data set - To write a report with the main results of the experiment - To reason in a critical way these results: have we achieve the goals of the experiment?
Assessment System
  • % end-of-term-examination 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • DW Cheng. Fundamentals of electromagnetism for engineers. Addison-Wesley.
  • JR Reitz, FJ Milford and RW Christie. Fundamentals of electromagnetic theory. Addison-Wesley.
Additional Bibliography
  • Sears, Zemansky, Young and Friedman. College Physics. Vols I and II. Addison-Wesley.

The course syllabus may change due academic events or other reasons.