Última actualización: 13/09/2018


Curso Académico: 2019/2020

Cálculo I
(15320)
Titulación: Grado en Ingeniería Aeroespacial (251)


Coordinador/a: IBORT LATRE, LUIS ALBERTO

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Competencias que adquiere el estudiante y resultados del aprendizaje.Más información en este enlace
El objetivo de este curso es proporcionar al alumno las herramientas básicas del cálculo diferencial e integral de una variable. Para lograr este objetivo el alumno debe adquirir una serie de conocimientos y capacidades. Conocimientos: - Conocer las funciones elementales y su representación. - Entender el concepto de límite y conocer técnicas para resolver límites indeterminados. - Conocer métodos numéricos para calcular aproximaciones a las raíces de una ecuación. - Entender los conceptos de continuidad y derivabilidad. - Entender el desarrollo de Taylor y sus aplicaciones - Entender los conceptos de aproximación local y global y saber resolver problemas de interpolación. - Entender el concepto de integral y conocer las técnicas para calcular primitivas de funciones. - Entender el concepto de ecuación diferencial ordinaria y conocer técnicas básicas de resolución de ecuaciones de primer orden. - Conocer las distintas representaciones de números complejos y saber operar con ellos. Capacidades Específicas: - Capacidad para trabajar con funciones descritas de forma gráfica, numérica o analítica. - Comprender el concepto de derivada y capacidad para resolver problemas que involucren dicho concepto. - Comprender el concepto de integral definida y capacidad para utilizar integrales en la resolución de problemas. - Comprender la relación entre los conceptos de derivada e integral a través del Teorema Fundamental del Cálculo. Capacidades Generales: - Capacidad de abstracción y deducción. - Capacidad de comunicación oral y escrita utilizando correctamente los signos y el lenguaje de las matemáticas. - Capacidad para modelar una situación real descrita con palabras mediante una función, ecuación diferencial o integral. - Capacidad para interpretar la solución matemática de un problema, su fiabilidad y limitaciones.
Descripción de contenidos: Programa
1. Conjeturas, teoremas, demostraciones. 2. Números reales. Desigualdades y valor absoluto. Funciones. 3. Límites de funciones: propiedades y cálculo. Continuidad y derivación. 4. Desarrollos de Taylor. Aproximación local. Representación gráfica de funciones. 5. Interpolación polinómica. Aproximación global. 6. Integral de Riemann. Teorema fundamental del cálculo. Cálculo de primitivas. Cálculo de longitudes, áreas y volúmenes. 7. Ecuaciones diferenciales de primer orden.
Actividades formativas, metodología a utilizar y régimen de tutorías
Sesiones teóricas (3 créditos). Sesiones de problemas con trabajo individual y en grupo (3 créditos).
Sistema de evaluación
  • Peso porcentual del Examen Final 60
  • Peso porcentual del resto de la evaluación 40
Bibliografía básica
  • Gilbert Strang. Calculus. Wellesley-Cambridge Press. 1991
  • H. ANTON, I. BIVENS and S. DAVIS. Calculus. Early Transcendentals Single Variable. John Wiley & Sons. 2009
Bibliografía complementaria
  • J. Stewart. Calculus. Thomson Brooks/Cole. 2009
  • Juan de Burgos Román. Cálculo Infinitesimal de una variable. McGraw-Hill. 1994
  • R. Larson, R. Hostetler, B. Edwards. Calculus. Houghton-Mifflin. 2006

El programa de la asignatura y la planificación semanal podrían sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.