1. Two body problem
Conservation laws
Conics and orbital elements
2. Kepler's equation
Formulation for the elliptic, parabolic, hyperbolic cases
Numerical solution
3. Orbital maneuvers
Fundamentals of spherical trigonometry
Hohmann, bielliptic transfers; plane change; phasing maneuvers, electric orbit raising
4. Preliminary orbit determination
Gibbs problem, Gauss problem
Lambert's problem
Porkchop diagrams
5. Perturbations
Special perturbation methods
General perturbation methods
Drag, solar radiation, third body
Geopotential and spherical harmonics
6. Interplanetary trajectories
Patched-conics method
Launch and B-Plane targeting
7. Relative motion and rendezvous
Clohessy-Wiltshire equations
8. Circular restricted three body problem
Derivation and normalization. Jacobi's energy integral
Lagrange libration points
Stability and trajectories near Lagrange points
9. Space vehicles: attitude dynamics
Free body attitude kinematics and dynamics
Gravity gradient
Reaction control system and reaction wheels
10. Introduction to space missions and space systems
Application orbits, types of missions
Spacecraft subsystems