Course: 2018/2019

Mechanics applied to Aerospace Engineering

(14165)

Students are expected to have completed

Calculus I, Calculus II, Linear Algebra, Physics I
We strongly advise you against taking this course if you have not passed Physics I yet

Competences and skills that will be acquired and learning results. Further information on this link

The goal of this course is that the student acquires a basic knowledge of classical mechanics applied to flight mechanics and aerospace systems.

Description of contents: programme

0 Introduction
- Newton's laws
- Scalar and vector quantities
- Review of vector calculus
- Degrees of freedom and constraints
1 Kinematics of point particles
- Reference frames
- Position, velocity and acceleration
- Planar motion
- Tangential and normal components
- Relative motion
- Rotations
- Relations between position, velocity and acceleration using translating and rotating axes
2 Dynamics of point particles
- Force and momentum
- Work and energy
- Rectilinear motion. Vibrations.
- Motion of a free particle
- Motion of a particle over a curve
- Motion of a particle over a surface
- Relative dynamics
- Angular momentum
- Central forces
- Kepler's problem
- Elliptical trajectories
3 Kinematics of a rigid body
- Velocity and acceleration fields
- Properties of the velocity field
- The Euler angles
4 Geometry of masses
- Center of mass
- Moments of inertia
- Moment of inertia tensor
- Steiner's theorem
- Principal axes
5 Rigid body dynamics
- Linear momentum
- Angular momentum
- Kinetic energy
- General equations for a system of particles
- General equations for the rigid body
- Equilibrium
- Work and energy principles
6 Systems of rigid bodies
- General equations
- Constraints and linkages
7 The airplane as a rigid body
- Airplane parts
- Forces on the airplane: Lift, drag, aerodynamic moments
- Straight and level flight
- Gliding flight
- Climbing flight

Learning activities and methodology

Theory sessions in master classes
Problem sessions in reduced groups
Lab-sessions and computer sessions with mathematical software
Personal and group work

Assessment System

- % end-of-term-examination 60
- % of continuous assessment (assigments, laboratory, practicals...) 40

Basic Bibliography

- J. H. Ginsberg. Engineering Dynamics. Cambridge Univ. Press. 2007

Additional Bibliography

- A.C. Kermode. Mechanics of Flight. Pearson. 2012