Última actualización: 10/06/2021 10:10:52


Curso Académico: 2021/2022

Cálculo diferencial aplicado
(15975)
Doble Grado en Ingeniería Informática y Administración de Empresas (Plan 2022) (Plan: 437 - Estudio: 233)


Coordinador/a: CARRETERO CERRAJERO, MANUEL

Departamento asignado a la asignatura: Departamento de Matemáticas

Tipo: Formación Básica
Créditos: 6.0 ECTS

Curso:
Cuatrimestre:

Rama de Conocimiento: Ingeniería y Arquitectura



Requisitos (Asignaturas o materias cuyo conocimiento se presupone)
Cálculo (Curso 1 - Cuatrimestre 1) Álgebra Lineal (Curso 1 - Cuatrimestre 1)
Objetivos
- COMPETENCIAS GENERALES Y TRANSVERSALES (CGB1): Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos y algorítmica numérica. - COMPETENCIAS ESPECÍFICAS: El objetivo del curso es proporcionar al alumno las herramientas necesarias para la comprensión de los principios científicos y matemáticos de la Ingeniería Informática. Los RESULTADOS DE APRENDIZAJE que se adquieren en Cálculo Diferencial Aplicado son del tipo R1 (conocimiento y comprensión). "Conocimiento y comprensión de los principios científicos y matemáticos de la Ingeniería Informática" Las competencias específicas de la materia se han dividido en tres apartados: CONOCIMIENTOS: - Saber resolver ecuaciones diferenciales ordinarias de primer orden, lineales y no lineales, e interpretar los resultados. - Saber resolver ecuaciones diferenciales ordinarias lineales de segundo orden. - Saber calcular la transformada de Laplace y cómo utilizarlas para resolver ecuaciones diferenciales. - Saber resolver sistemas de ecuaciones diferenciales lineales de primer orden. - Entender el concepto de serie de Fourier y su utilización para resolver ecuaciones diferenciales. - Saber utilizar métodos numéricos para calcular soluciones aproximadas de ecuaciones diferenciales no lineales. CAPACIDADES ESPECÍFICAS: - Aumentar el grado de abstracción. - Ser capaz de resolver problemas prácticos utilizando ecuaciones diferenciales. CAPACIDADES GENERALES: -Capacidad de comunicación oral y escrita utilizando correctamente los signos y el lenguaje de las Matemáticas. - Capacidad para modelar una situación real descrita con palabras mediante ecuaciones diferenciales. - Capacidad para interpretar la solución matemática de un problema, su fiabilidad y sus limitaciones.
Resultados del proceso de formación y aprendizaje
Descripción de contenidos: Programa
1.- Ecuaciones diferenciales de primer orden: a. Introducción. b. Ecuaciones lineales. c. Ecuaciones separables. d. Ecuaciones exactas. e. Ecuaciones homogéneas. 2.- Ecuaciones diferenciales de segundo orden: a. Ecuaciones lineales y no lineales. b. Ecuaciones lineales homogéneas y no homogéneas. c. Reducción de orden. d. Ecuaciones de Euler-Cauchy. 3- La Transformada de Laplace: a. Definición. Propiedades. b. Aplicación a ecuaciones diferenciales. 4.- Sistemas de ecuaciones diferenciales: a. Sistemas lineales y no lineales. b. Representación vectorial. c. Autovalores y linealización. 5.- Series de Fourier y separación de variables: a. Resultados básicos. b. Series de Fourier de Senos y Cosenos. c. Aplicación de series de Fourier y separación de variables a ecuaciones diferenciales en derivadas parciales. 6.- Métodos numéricos: a. Método de Euler. b. Método de Runge-Kutta. c. Problemas de contorno.
Actividades formativas, metodología a utilizar y régimen de tutorías
1.- Docencia en grupo magistral o agregado. Enseñanza teórica (3 ECTS). 2.- Docencia presencial en grupo reducido. Sesiones de problemas con trabajo individual y en grupo (3 ECTS). Régimen de tutorías: Cada profesor tiene asignadas sus horas de tutoría según el reglamento de la UC3M. En particular, un mínimo de una hora por grupo docente (agregado o de teoría) y tratando de buscar horarios compatibles con los alumnos.
Sistema de evaluación
  • Peso porcentual del Examen/Prueba Final 60
  • Peso porcentual del resto de la evaluación 40

Calendario de Evaluación Continua


Bibliografía básica
  • Boyce, William E.. Ecuaciones diferenciales y problemas con valores en la frontera . Limusa.
  • Simmons, George Finlay . Ecuaciones diferenciales : con aplicaciones y notas históricas.. McGraw-Hill.
  • Zill, Dennis G.. Ecuaciones diferenciales con aplicaciones de modelado . International Thomson.
Recursos electrónicosRecursos Electrónicos *
Bibliografía complementaria
  • Haberman, Richard. Ecuaciones en derivadas parciales con series de Fourier y problemas de contorno 3ª ed.. Pearson-Prentice Hall.
  • Kiseliov, Aleksandr I.. Problemas de ecuaciones diferenciales ordinarias . Mir.
  • Simmons, George Finlay . Ecuaciones diferenciales : teoría, técnica y práctica. McGraw-Hill Interamericana.
  • Weinberger, Hans F. . Ecuaciones diferenciales en derivadas parciales : con métodos de variable compleja y de transformaciones integrales. Reverté.
(*) El acceso a algunos recursos electrónicos puede estar restringido a los miembros de la comunidad universitaria mediante su validación en campus global. Si esta fuera de la Universidad, establezca una VPN


El programa de la asignatura podría sufrir alguna variación por causa de fuerza mayor debidamente justificada o por eventos académicos comunicados con antelación.