Checking date: 10/02/2020

Course: 2019/2020

Manufacturing automation systems
Study: Master in Industrial Engineering (226)


Department assigned to the subject: Department of Systems Engineering and Automation

Type: Compulsory
ECTS Credits: 3.0 ECTS


Students are expected to have completed
Industrial Automation I Production Systems and Automation
Competences and skills that will be acquired and learning results. Further information on this link
To design and automated production systems and advanced control processes
Description of contents: programme
1. Automated Production Systems 1.1 Production Systems. Industrial automation. 1.2 Automated machines. Robotized systems. 1.3 Flexible Automation Systems. 1.4 Production Resource Management 2 PLCs I: Modeling and contact language. 2.1 Modeling discrete event systems 2.2 Programming Automata 2.3 Leadder Language Contacts 2.4 Sequential functional chart 3 PLCs II: literal Languages 3.1 Structured Text Language 3.2 Instruction List 4 PLCs III: Analog Inputs and Outputs and Function Blocks. Communications. 4.1 Analog inputs and outputs 4.2 Indexed addressing. 4.3 Function Blocks: PID controller. 4.4 Industrial Communications.Configurations. 5 Robotics I: Industrial Robots in Production Systems 5.1 Background and Definitions 5.2 Components of an industrial robot 5.3 Security in industrial robots 5.4 Applications of an industrial robot 6 Robotics II: Kinematic calculation tools. 6.1 Representation of the location 6.2 Homogeneous transformation matrix 6.3 Application of quaternions 6.4 Relations between methods 7 Robotics III: Rapid Programming Language 7.1 Data Structure 7.2 Motion Instructions 7.3 Other instructions 8 Robotics IV: Introduction to robotics simulation 8.1 Simulation Tools 8.2 Introduction to RobotStudio 8.3 Simulation with RobotStudio
Learning activities and methodology
Training activities will include: - Lectures, which will present the knowledge that students should acquire. To facilitate their development, students will receive class notes and texts have benchmarks that will facilitate the classes and develop further work. - Resolution of exercises by the student self-assessment that will serve you and to acquire the necessary skills. - Lab where students experimentally verify the theoretical results and concepts seen in class. The lectures, tutorials resolution of doubts in small groups, student presentations, tutorials and personal work, including study, tests and examinations aimed at the acquisition of knowledge will involve 3 ECTS.
Assessment System
  • % end-of-term-examination 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40
Basic Bibliography
  • Benhabib, Beno. Manufacturing: design, production, automation and integration. Ediciones Técnicas Izar. 2004
  • REMBOLD, U., NNAJI, B.O., STORR, A.: . Computer Integrated Manufacturing and Engineering. Addison-Wesley. 1993

The course syllabus and the academic weekly planning may change due academic events or other reasons.