Checking date: 28/03/2025 11:37:01


Course: 2025/2026

Digital Electronics
(19043)
Bachelor in Industrial Electronics and Automation Engineering (Plan: 444 - Estudio: 223)


Coordinating teacher: LOPEZ ONGIL, CELIA

Department assigned to the subject: Electronic Technology Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Fundamentals of Electronic Engineering
Objectives
By the end of this subject, students will be able to have: - A systematic understanding of the key aspects and concepts of their branch of engineering in digital electronics. - Coherent knowledge of their branch of engineering including some at the forefront of the branch in digital electronics. - The ability to apply their knowledge and understanding of digital electronics to identify, formulate and solve engineering problems using established methods. - The ability to apply their knowledge and understanding to develop and realise designs of digital circuits to meet defined and specified requirements. - An understanding of methodologies for the design and description of digital circuits, and an ability to use them. - Workshop and laboratory skills. - The ability to select and use appropriate equipment, tools and methods, as FPGAs, hardware description languages, simulation and logic synthesis tools for digital circuits. - The ability to combine theory and practice to solve problems of digital electronics. - An understanding of applicable techniques and methods in digital electronics, and of their limitations.
Learning Outcomes
RA1.2: A systematic understanding of the key aspects and concepts of their branch of industrial engineering. RA1.3: Coherent knowledge of their branch of industrial engineering including some at the forefront of the branch. RA2.1: The ability to apply their knowledge and understanding to identify, formulate and solve engineering problems using established methods. RA3.1: The ability to apply their knowledge and understanding to develop and realise designs to meet defined and specified requirements. RA3.2: An understanding of design methodologies, and an ability to use them. RA4.3: Workshop and laboratory skills. RA5.1: The ability to select and use appropriate equipment, tools and methods. RA5.2: The ability to combine theory and practice to solve engineering problems. RA5.3: An understanding of applicable techniques and methods, and of their limitations. CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG1: Ability to resolve problems with initiative, creativity decision-making and critical reasoning skills, and to communicate and transmit knowledge, skills and abilities in the Industrial Engineering area. CG3: Capacity to design a system, component or process in the area of electronic and automatic engineering in compliance with required specifications. CG9: Knowledge and capacity to apply computational and experimental tools for analysis and quantification of electronic and automatic engineering problems. CG10: Capacity to design and carry out experiments and to analyze and interpret data obtained. CG22: Knowledge of the fundamentals of electronics. CE3: Knowledge of fundamentals and applications of digital electronics and microprocessors.
Description of contents: programme
1. Representation of information in digital systems - Numbering systems - Conversions between numbering systems - Binary codes 2. Boolean algebra and logic gates - Fundamental postulates and properties of Boolean algebra - Boolean functions and expressions - Logic gates. Logic functions implementation and minimisation 3. Introduction to digital circuit design and implementation - Technologies for the implementation of digital circuits - Hardware description languages - Design flow: simulation and automatic synthesis - Basic design concepts in VHDL 4. Combinational circuits - Encoders and decoders - Multiplexers and demultiplexers - Comparators - Association of combinational circuits - Implementation of logical functions with combinational circuits 5. Arithmetic combinational circuits and description in VHDL - Representation of signed numbers: Sign-Magnitude, 1-Complement and 2-Complement systems - Binary arithmetic: addition, subtraction, multiplication - Representation of real numbers - Addition, subtraction and multiplication circuits - Arithmetic-Logic Units (ALU) 6. Bistables - Asynchronous and synchronous bistables - Bistable control logics - Time characteristics - Synchronous circuits - Circuits with bistables: chronograms 7. Registers and counters - Registers - Counters - Applications with counters 8. Synchronous sequential circuits - Finite state machines: Moore and Mealy models - Counters as state machines - Analysis of synchronous sequential circuits - Synthesis of synchronous sequential circuits 9. Memories - Types and characteristics of memories according to their technology - Types and characteristics of memories according to their functionality - Description in VHDL. 10. Simulation and synthesis of digital circuits described in VHDL. - VHDL for simulation and synthesis - Test benches and simulation models - Synthesis. Resources and timing. Constraints 11. Digital systems: structure and implementation - Structure: data path and control - Programmable logic devices (FPGA) - Custom integrated circuits (ASICs) - Microprocessors
Learning activities and methodology
Lectures: 50%, 1 session/week (2 hours) Practice: 36%, 1 session/week (2 hours) Lab. Practice: 14%, 4 sessions, (2 hours each) Personal assistance, as scheduled by the teacher
Assessment System
  • % end-of-term-examination/test 45
  • % of continuous assessment (assigments, laboratory, practicals...) 55

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • .. FPGA Manufacturers web pages. Xilinx: www.xilinx.com; Altera: www.altera.com; . ..
  • B. Mealy, F. Tappero. Free Range VHDL. The no-frills guide to writing powerful code for your digital implementations. open-source (http://www.freerangefactory.org/).
  • R. Tokheim. Digital Electronics. McGraw-Hill.
  • Smith, D.J.. HDL chip design. Doone. 1997
  • T. L. Floyd. Digital Fundamentals. Prentice-Hall (several editions).
Additional Bibliography
  • D. D. Gajski. Principios de Diseño Digital. Prentice-Hall.
  • J. F. Wakerly. Digital Design Principles and Practices. Pearson Education.

The course syllabus may change due academic events or other reasons.