Checking date: 30/04/2025 13:19:59


Course: 2025/2026

Simulation of dynamic systems
(18417)
Bachelor in Industrial Electronics and Automation Engineering (Plan: 444 - Estudio: 223)


Coordinating teacher: RODRIGUEZ URBANO, FRANCISCO JOSE

Department assigned to the subject: Systems Engineering and Automation Department

Type: Compulsory
ECTS Credits: 3.0 ECTS

Course:
Semester:




Objectives
By the end of this subject, students will be able to : 1. To have the knowledge and understanding of the principles related to scientific computing for modelling and simulation of dinamical systems. 2. Apply their knowledge and understanding of dynamical systems to identify, formulate and solve modelling and simulation problems of engineering systems using established methods; 3. To select and apply relevant analytic and modelling methods. 4. To have an understanding of the different programming methods used for implementing mathematical algorithms on scientific computation computer programs, and the capacity to apply them to solve engineering problems. 5. To have the workshop and laboratory skills to work with scientific computation programs. 6. Select and use appropriate mathematical tools and programming methods to solve engineering problems related to modelling and simulation of dinamical systems. 7. To combine theory and practice to implement on a computer program the solution to engineering problems regarding modelling and simulation of dynamic systems; 8. Understand the applicable techniques and methods in modelling and simulation of dynamic systems, and their limitations;
Learning Outcomes
RA1.1: Knowledge and understanding of the scientific and mathematical principles underlying their branch of industrial engineering. RA2.1: The ability to apply their knowledge and understanding to identify, formulate and solve engineering problems using established methods. RA2.3: The ability to select and apply relevant analytic and modelling methods. RA3.2: An understanding of design methodologies, and an ability to use them. RA4.3: Workshop and laboratory skills. RA5.1: The ability to select and use appropriate equipment, tools and methods. RA5.2: The ability to combine theory and practice to solve engineering problems. RA5.3: An understanding of applicable techniques and methods, and of their limitations. CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG1: Ability to resolve problems with initiative, creativity decision-making and critical reasoning skills, and to communicate and transmit knowledge, skills and abilities in the Industrial Engineering area. CG3: Capacity to design a system, component or process in the area of electronic and automatic engineering in compliance with required specifications. CG9: Knowledge and capacity to apply computational and experimental tools for analysis and quantification of electronic and automatic engineering problems. CE7: Knowledge and capacity for system modelling and simulation.
Description of contents: programme
1. Introduction to modeling and simulation. a. Definition an basic concepts. b. Basic types of models of dynamical systems. 2. Modeling and simulation languages review. a. Introduction to block oriented languages for simulation. 3. Basic techniques for Matlab programming. a. Vectors an Matrices handling. b. Functions and flow control components. c. Special functions and libraries. d. Graphics management. 4. Development of examples and applications on several application domains. a. Application to vibrational systems. b. Application to control systems. c. Examples of biological systems.
Learning activities and methodology
Teoretical and Practical sessions mainly on computer rooms with Matlab software. Tuition session for the development of practical problems for subject evaluation. Some evaluation session interleaved during the classes.
Assessment System
  • % end-of-term-examination/test 20
  • % of continuous assessment (assigments, laboratory, practicals...) 80

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • Edward B. Magrab. An Engineers guide to Matlab third edition. Prentice Hall. 2010
Additional Bibliography
  • K.Ogata. Modern control Engineering. Prentice Hall. 2010

The course syllabus may change due academic events or other reasons.