Course: 2020/2021

Engineering fluid mechanics

(14023)

Students are expected to have completed

Calculus I, II
Physics I, II
Linear Algebra
Writing and Communication Skills
Programming
Thermal Engineering
Machine Mechanics

Competences and skills that will be acquired and learning results. Further information on this link

By the end of this subject, students will be able to have:
1. knowledge and understanding of fluid mechanics fundamentals
2. awareness of the wider multidisciplinary context of engineering.
3. the ability to apply their knowledge and understanding to identify, formulate and solve problems of fluid mechanic using established methods;
4. the ability to design and conduct appropriate experiments, interpret the data and draw conclusions;
5. workshop and laboratory skills.
6. the ability to select and use appropriate equipment, tools and methods;
7. the ability to combine theory and practice to solve engineering problems of fluid mechanics;
8. an understanding of applicable techniques and methods in fluid mechanics, and of their limitations;

Description of contents: programme

This is a Basic course in Fluid Mechanics. Its Programme contains 7 parts:
FIRST PART: Introduction to Fluid Mechanics. The continuum hypothesis. Variables of interest.
SECOND PART: Hydrostatics: Application of Fluid Mechanics to a stagnant fluid. Pressure field in a stagnant fluid. Force and Moment acting on a solid surface. Archimedes Principle. Applications: Barometer, Manometers, Hydraulic presses ¿
THIRD PART: Basic concepts of fluid flow kinematics. Reynolds Transport theorem.
FOURTH PART: Conservation equations for fluid volumes and control volumes. Mass, Momentum and Energy conservation equations. Bernoulli equation; examples. Angular momentum equation. Applications to engineering problems.
FIFTH PART: Dimensional Analysis. The Pi theorem. Application of Dimensional Analysis to Fluid Mechanics. Relevant dimensionless numbers in Fluid Mechanics. Applications.
SIXTH PART: Flow in ducts. Flow regimes. Mechanical energy conservation applied to pipe flow with friction losses. Friction factor. Moody's chart and Colebrook equation . Localized losses in pipe systems (bends, valves, expansions, other fittings. ). Illustrative examples of flow in pipes.
SEVENTH PART: External Flows

Learning activities and methodology

Teaching methodology will incluye:
1. Lectures: The students will be provided with lecture notes and recommended bibliography.
2. Problem solving sessions, related with the course topics
3. Homework problems aiming at student self-evaluation.
4. Development and interactive presentation of guided works, including four lab session as direct application of theory.

Assessment System

- % end-of-term-examination 60
- % of continuous assessment (assigments, laboratory, practicals...) 40

Basic Bibliography

- Antonio Crespo Martínez. Mecánica de Fluidos. Thomson.
- Frank M. White. Fluid Mechanics. McGraw Hill.
- MARCOS VERA COELLO, CARLOS MARTÍNEZ BAZÁN, ANTONIO L. SÁNCHEZ PÉREZ, IMMACULADA IGLESIAS ESTRADÉ. Ingenieria Fluidomecanica. Paraninfo. 2012

Additional Bibliography

- A. L. Sánchez. Apuntes de Procesos Fluidotérmicos. Publicaciones de la Universidad Carlos III de Madrid.. 2005
- Amable Liñán Martínez. Apuntes de Mecánica de Fluidos. Publicaciones de la ETSI Aeronáuticos de Madrid. 2006