Checking date: 19/06/2019

Course: 2019/2020

Electrical power engineering fundamentals
(14020)
Study: Bachelor in Industrial Electronics and Automation Engineering (223)

Coordinating teacher: ROBLES MUÑOZ, GUILLERMO

Department assigned to the subject: Department of Electrical Engineering

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:

Students are expected to have completed
All first-year subjects. Among them, Calculus I, Calculus II and Physics II are of utmost importance.
Competences and skills that will be acquired and learning results. Further information on this link
After the student has passed this subject, he/she will be able to: - Describe the basic aspects of the structure and operation of electric circuits and power systems (single- and three-phase), employing a proper wording and terminology, in terms of their fundamental variables: voltages, currents, power, impedances, and power factor. - Analyze whatever electrical circuit in steady-state, calculating voltages, currents and power in each element, using systematic methods (nodal analysis, mesh analysis) as well as non-systematic ones (circuit reduction, grouping of elements, etc). Also he/she will be able to describe the behaviour of any dipole by substituting the balance of the circuit by its Thevenin or Norton equivalent. - Perform this type of analysis on any a.c. circuit at constant frequency, representing the corresponding magnitudes by their associate complex phasors. - Correctly choose and operate electrical instruments to carry out experimental measurements on a real circuit. - Use the single-phase equivalent to analyze a simple balanced three-phase circuit, and correctly apply reactive power compensation techniques by insertion of banks of capacitors. - Finally, the student will be able to analyze the transient response in first order (RC or RL) circuits.
Description of contents: programme
1. Introduction 1.1. General concepts 1.2. Kirchhoff's laws 2. Direct current circuits 2.1. Resistances and dependent and independent generators 2.2. Associations in series and parallel 2.3. Methods of meshes and nodes 2.4. Thévenin theorem 3. Altern current circuits 3.1. Inductances (coils) and capacitors 3.2. Waves and phasors 3.3. Impedance. 3.4. Circuits rseolutions in frequency domain 3.5. Power in AC circuits 4. Three-phase systems 4.1. General concepts 4.2. Line-to-neutral and line-to-line magnitudes 4.3. Single phase equivalent 4.4. Three phase power and reactive power compensation 5. First-order transient circuits 5.1 RC transient circuits 5.2 RL transient circuits
Learning activities and methodology
Basic theoretical concepts that students need learning to understand the subject will be explained in master classes. Within the master class will be solved simple exercises that will help settling theory explained in each session. To make optimum use of the master class, it woulll be advisable to know which topics will be presented consulting on schedule. Likewise, the students should have worked on those topics before classes. Small classes in which the nearest student learning track will be done. These sessions will assess the skills acquired during the previous lectures and weekly work of students. Work, exercises and small daily examinations may be proposed. Along the course, three tests will be done on the days fixed in the schedule. There will be three practice sessions of laboratory in which the implementation of theoretical concepts will be worked. There are few specific times for tutorials and consultations of students. At the discretion of the teacher, tutoring outside that time period may be fixed if a student requests it.
Assessment System
• % end-of-term-examination 55
• % of continuous assessment (assigments, laboratory, practicals...) 45
Basic Bibliography
• Bruce M. Carlsson. Teoría de Circuitos. Paraninfo. 2000
• Guillermo Robles . Problemas resueltos de fundamentos de ingeniería eléctrica. PARANINFO. 2015
• Jesús Fraile Mora. Electromagnetismo y Circuito Eléctricos. Mc. Graw Hill. 1995
• Julio Usaola, Mª Ángeles Moreno. Circuitos eléctricos: Problemas y ejercicios resueltos. Pearson Educación. 2002
• Antonio Conejo Navarro. Circuitos eléctricos para la Ingeniería. McGraw-Hill. 2004
• Antonio Gómez Expósito. Teoría de Circuitos. Ejercicios de autoevaluación. Thomson. 2005
• J. Fernández Moreno. Teoría de Circuitos. Teoría y problemas resueltos. Paraninfo. 2011

The course syllabus and the academic weekly planning may change due academic events or other reasons.