Checking date: 09/07/2020

Course: 2020/2021

Magnetic circuits and transformers
Study: Bachelor in Electrical Power Engineering (222)

Coordinating teacher: BURGOS DIAZ, JUAN CARLOS

Department assigned to the subject: Department of Electrical Engineering

Type: Compulsory
ECTS Credits: 6.0 ECTS


Students are expected to have completed
Physics II Electrical Power Engineering Fundamentals
Competences and skills that will be acquired and learning results. Further information on this link
Skills to design electromagnetic devices. Skills to analyze the performance of a transformer under different circumstances. Skill to carry out tests to obtain transformer parameters. Basic knowledge about national and international standards. Skill to analyze interactions between the transformer and the electrical system. Skill to select a transformer for a given aplication.
Description of contents: programme
Topic 1: REVIEWING BASIC CONCEPTS ON ELECTRICITY AND MAGNETISM. Maxwell equations. Core losses. Dielectric losses. Magnetic circuits. Self and mutual inductances. Topic 2: CONSTITUTION OF POWER TRANSFORMERS. Magnetic core, windings, insulation system. Transformer refrigeration. Basic concepts on maintenance. Topic 3: 1-PHASE TRANSFORMERS. No load performance. On-load performance. Overloads. Equivalent circuit. Efficiency. Voltage drop. Parallel operation. Short circuit currents. Inrush current. Topic 4: 3-PHASE TRANSFORMERS. Types of transformers. Phasor groups. No-load performance. Transformer performance under balanced and un-balanced loads. Zero-sequence impedance. Tertiary windings. Interconnected star windings. Three winding transformers. Autotransformers. Tap changers. Application of the different transformer types and phasor groups.
Learning activities and methodology
The learning methodology includes: - Lectures covering the main topics described within the course outline. - Case study and problem solving lectures, where some issues are addressed from a practical point of view. - Laboratory sessions
Assessment System
  • % end-of-term-examination 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40
Basic Bibliography
  • Kulkarni, S.V; Khaparde, S.A.. Transformer engineering. Design and Practice. Marcel Dekker. 2012
Recursos electrónicosElectronic Resources *
Additional Bibliography
  • S.Kulkarni; S Khaparde. Transformer Engineering. Design and Practice. Marcel Dekker. 2012
(*) Access to some electronic resources may be restricted to members of the university community and require validation through Campus Global. If you try to connect from outside of the University you will need to set up a VPN

The course syllabus and the academic weekly planning may change due academic events or other reasons.

More information: