Checking date: 16/05/2025 10:31:43


Course: 2025/2026

Structural Integrity
(14226)
Bachelor in Mechanical Engineering (Plan: 446 - Estudio: 221)


Coordinating teacher: VAZ-ROMERO SANTERO, ALVARO

Department assigned to the subject: Continuum Mechanics and Structural Analysis Department

Type: Electives
ECTS Credits: 3.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Elasticity Strength of Materials.
Objectives
Knowledge of the basic techniques for the structural integrity of solids under different load conditions, which fundament the formation of the Mechanical Engineer. Capacity to analyse structures, to assess the hypotheses and to interpret the results.
Learning Outcomes
RA1.2: An systematic understanding of the key aspects and concepts of their branch of engineering. RA1.3: Coherent knowledge of their branch of engineering including some at the forefront of the branch. RA2.1: The ability to apply their knowledge and understanding to identify, formulate and solve engineering problems using established methods. RA2.3: The ability to select and apply relevant analytic and modelling methods. RA3.2: An understanding of design methodologies, and an ability to use them. RA4.2: Rhe ability to design and conduct appropriate experiments, interpret the data and draw conclusions. RA5.2: The ability to combine theory and practice to solve engineering problems. RA5.3: An understanding of applicable techniques and methods, and of their limitations. RA5.4: An awareness of the non-technical implications of engineering practice. RA6.3: Demonstrate awareness of the health, safety and legal issues and responsibilities of engineering practice, the impact of engineering solutions in a societal and environmental context, and commit to professional ethics, responsibilities and norms of engineering practice. CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG1: Ability to resolve problems with initiative, creativity decision-making and critical reasoning skills, and to communicate and transmit knowledge, skills and abilities in the Industrial Engineering area. CG3: Capacity to design a system, component or process in the area of mechanical engineering in compliance with required specifications. CG4: Knowledge and capacity to apply current legislation as well as mandatory specifications, requirements and norms in the area of mechanical engineering. CG9: Knowledge and capacity to apply computational and experimental tools for analysis and quantification of mechanical engineering problems. CE5: Knowledge and capacity to construct and design industrial structures and buildings.
Description of contents: programme
Basic concepts on structural stability. 1. . Introduction. Elastoplastic fracture mechanics 2. Fracture criteria on elastic linear materials 3. Basic concepts on dynamic fracture dynamics 4. Fracture criteria on elastoplactic materials Fatigue crack propagation 5. Fatigue behavior 6. Fatigue life calculation on mechanical components 7. Structural integrity at high temperature 7. Fatigue and fracture tests Experimental techniques and numerical simulation 10. Design in fatigue and fracture. 11. Numerical methods in fatigue and fracture problems. 10. Standards in fracture and fatigue.
Learning activities and methodology
In each week one lecture session (master class) and one practical session (in reduced groups) will be taught. The first is geared to the acquisition of theoretical knowledge, and the second to the acquisition of practical skills related to theoretical concepts.
Assessment System
  • % end-of-term-examination/test 0
  • % of continuous assessment (assigments, laboratory, practicals...) 100

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • Anderson, T.L.. Fracture mechanics: Fundamentals and applications . CRC Press. 1995
  • Anglada, M.J.. Fractura de materiales . UPC. 2002
  • Broek, David. Elementary engineering fracture mechanics. Kluwer Academic. 1991
Additional Bibliography
  • K. Ravi-Chandar. Fracture mechanics. Springer. 1998
  • Kanninen, Melvin F.. Advanced fracture mechanics. Oxford University Press. 1985

The course syllabus may change due academic events or other reasons.