Checking date: 30/04/2025 12:22:07


Course: 2025/2026

Fluid installations and hydraulic machinery
(14204)
Bachelor in Mechanical Engineering (Plan: 446 - Estudio: 221)


Coordinating teacher: SEVILLA SANTIAGO, ALEJANDRO

Department assigned to the subject: Thermal and Fluids Engineering Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
- All the courses in mathematics (calculus, algebra, etc.) - Engineering fluid mechanics
Objectives
By the end of this subject, students will be able to have: 1. A systematic understanding of the key aspects and concepts of hydraulic machines and systems. 2. The ability to apply their knowledge and understanding to identify, formulate and solve problems of hydraulic machines and systems using established methods. 3. The ability to select and apply relevant analytic and modelling methods in hydraulic machines and systems. 4. An understanding of design methodologies in fluid mechancis, and an ability to use them. 5. The ability to combine theory and practice to solve problem of hydraulics. 6. An understanding of applicable techniques and methods in hydraulic machines and systems, and of their limitations. 7. Function effectively as an individual and as a member of a team.
Learning Outcomes
RA1.2 An systematic understanding of the key aspects and concepts of their branch of engineering. RA2.1 The ability to apply their knowledge and understanding to identify, formulate and solve engineering problems using established methods. RA2.3 The ability to select and apply relevant analytic and modelling methods. RA3.1 The ability to apply their knowledge and understanding to develop and realise designs to meet defined and specified requirements. RA3.2 An understanding of design methodologies, and an ability to use them. RA4.2 Rhe ability to design and conduct appropriate experiments, interpret the data and draw conclusions. RA4.3 Workshop and laboratory skills. RA5.2 The ability to combine theory and practice to solve engineering problems. RA5.3 An understanding of applicable techniques and methods, and of their limitations. CB1 Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2 Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG1 Ability to resolve problems with initiative, creativity decision-making and critical reasoning skills, and to communicate and transmit knowledge, skills and abilities in the Industrial Engineering area. CG3 Capacity to design a system, component or process in the area of mechanical engineering in compliance with required specifications. CG9 Knowledge and capacity to apply computational and experimental tools for analysis and quantification of mechanical engineering problems. CE6 Applied knowledge of the fundamentals of fluid mechanical systems and machines.
Description of contents: programme
This is an eminently practical course, so the student must master the necessary fundamental knowledges at the time on enrollment. CHAPTER 1: Steady flow of liquids in ducts 1.1 Primary head losses. Colebrook correlation and Moody¿s chart. 1.2 Non-circular cross-section ducts. Hydraulic diameter. 1.3 Localized head losses: Valves, Elbows, curves, expansions, contractions, etc. 1.4 Coupling of turbomachinery to hydraulic facilities. CHAPTER 2: Steady flow of liquids in pipe networks. 2.1 Pipes in series and in parallel. 2.2 Analysis of branched ducts: the three-reservoirs problem. 2.3 Analysis of closed-loop pipe networks. Matrix algorithm and its numerical implementation. CHAPTER 3: Unsteady phenomena in pipe flow. 3.1 Theory of unsteady incompressible flow in ducts. 3.2 Characteristic acceleration and discharge times. Quasi-steady flow. 3.3 Order-of-magnitude analysis of characteristic variables in unsteady pipenetworks flow. Non-dimensionalization of the equations. 3.4 Applications. Surge tanks. 3.5 Compressibility effects. Basic theory of water hammer. Reflection and transmission of waves. Applications. CHAPTER 4: Introduction to turbomachinery. 4.1 Definitions. Classification of incompressible fluid machines. 4.2 Characteristic curves of pumps ad turbines. 4.3 Cavitation in turbomachinery. 4.4 Similarity in pumps. 4.5 Similarity in turbines. 4.6 Coupling of pumps and turbines to a hydraulic network.
Learning activities and methodology
The methodology will include: (1) Lectures, where the basic knowledges will be exposed. (2) Resolution of problems. (3) Resolution of problems by the student, that will be useful to self-assess his/her knowledge and develop the necessary skills. (4) The students will attend to the lab sessions and elaborate the lab reports.
Assessment System
  • % end-of-term-examination/test 50
  • % of continuous assessment (assigments, laboratory, practicals...) 50

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • Antonio Crespo y Julio Hernández. Problemas de Mecánica de Fluidos y Máquinas Hidráulicas. Cuadernos de la UNED. 1996
  • Crespo Martínez, Antonio. Mecánica de fluidos. Thomson Paraninfo. 2006
  • Frank M. White. Fluid Mechanics. McGraw-Hill. 2003
Additional Bibliography
  • Antonio Barrero y Miguel Pérez-Saborid. Fundamentos y Aplicaciones de la Mecánica de Fluidos. McGraw-Hill. 2005
  • G.F. Round. Incompressible Flow Turbomachines: Design, Selection, Applications, and Theory. Butterworth-Heinemann. 2004
  • M Hanif Chaudhry. Applied Hydraulic Transients. Springer. 2014

The course syllabus may change due academic events or other reasons.