Checking date: 30/05/2022

Course: 2022/2023

Electrical power engineering fundamentals
(14192)
Study: Bachelor in Mechanical Engineering (221)

Coordinating teacher: ARNALTES GOMEZ, SANTIAGO

Department assigned to the subject: Electrical Engineering Department

Type: Compulsory
ECTS Credits: 6.0 ECTS

Course:
Semester:

Requirements (Subjects that are assumed to be known)
Calculus I Calculus II Linear Algebra Physics II
Objectives
By the end of this subject, students will be able to have: 1. A systematic understanding of the key aspects and concepts of electrical engineering; 2. Awareness of the wider multidisciplinary context of engineering. 3. The ability to apply their knowledge and understanding to identify, formulate and solve electrical engineering problems using established methods; 4. The ability to design and conduct appropriate experiments, interpret the data and draw conclusions; 5. Workshop and laboratory skills. 6. The ability to combine theory and practice to solve electrical engineering problems.
Skills and learning outcomes
Description of contents: programme
1. Electrical circuits 1.1 Electrical variables and units 1.2. Topological definitions 1.3. Kirchhoff's laws 1.4. Cicuit elements: resistor, inductor, capacitor and sources. 2. Analysis of DC circuits. 2.1. Parallel and series connections 2.2. Mesh method 2.3. Node method 2.5. Thévenin's theorem 2.3. Superposition principle. 3. Analysis of AC circuits. 3.1. Sinusoidal waves and phasors. 3.2. Impedance. 3.3. Circuit analysis in the frequency domain. 3.5. Power in AC circuits. 4. Analysis of three phase circuits. 4.1. Structure of a three phase system. 4.2. Phase and line magnitudes. 4.3. Single-phase equivalent circuit. 4.4. Three phase power and reactive compensation. Laboratory sessions about current, voltage and power measurements in DC, AC circuits and three phase systems.
Learning activities and methodology
- On-line magistral classes for the exposition of the subject content. - Classes in smaller groups for the resolution of circuit analysis exercises. - Individual and collective tutoring for solving student doubts. - Student individual work with proposed exercises. - Laboratory sessions for mounting an electrical circuit and measuring.
Assessment System
• % end-of-term-examination 60
• % of continuous assessment (assigments, laboratory, practicals...) 40
Calendar of Continuous assessment
Basic Bibliography
• Carlson, A. Bruce. Teoría de Circuitos. Thomson.
• Fraile Mora, Jesús. Electromagnetismo y circuitos eléctricos. McGraw-Hill.
• Guillermo Robles. Problemas resueltos de fundamentos de ingeniería eléctrica. Paraninfo. 2015
• Usaola, Julio y Moreno, Mª. Ángeles. Circuitos eléctricos. Problemas y ejercicios resueltos. Pearson Educación.