Checking date: 24/01/2025 14:26:35


Course: 2024/2025

Advanced concepts of Fluid Mechanics
(18436)
Bachelor in Mechanical Engineering (Plan: 446 - Estudio: 221)


Coordinating teacher: MORENO BOZA, DANIEL

Department assigned to the subject: Thermal and Fluids Engineering Department

Type: Electives
ECTS Credits: 3.0 ECTS

Course:
Semester:




Requirements (Subjects that are assumed to be known)
Linear Algebra, Calculus I, Physics I, Calculus II, Physics II, Thermal Engineering, Engineering Fluid Mechanics
Objectives
By the end of this subject, students will be able to have: 1. A systematic understanding of the key aspects and concepts of fluid mechanics for its rigorous application to egineering problems. 2. The ability to apply their knowledge and understanding to identify, formulate and solve problems of fluid mechanics using established methods. 3. The ability to select and apply relevant analytic and modelling methods in fluid mechanics. 4. An understanding of approximation methods in fluid mechanics, and the ability to use them to solve engineering problems. 5. Skills to effectively find and use appropriate bibliographical sources of scientific and technical nature in the different fields of fundamental and applied fluid mechanics. 6. Ability to combine theory and practice to solve fluid mechanics problems. 7. An understanding of applicable techniques and methods in fluids engineering and of their limitations.
Learning Outcomes
RA1.2: An systematic understanding of the key aspects and concepts of their branch of engineering. RA1.3: Coherent knowledge of their branch of engineering including some at the forefront of the branch. RA2.1: The ability to apply their knowledge and understanding to identify, formulate and solve engineering problems using established methods. RA2.3: The ability to select and apply relevant analytic and modelling methods. RA4.2: Rhe ability to design and conduct appropriate experiments, interpret the data and draw conclusions. RA5.1: The ability to select and use appropriate equipment, tools and methods. RA5.2: The ability to combine theory and practice to solve engineering problems. RA5.3: An understanding of applicable techniques and methods, and of their limitations. CB1: Students have demonstrated possession and understanding of knowledge in an area of study that builds on the foundation of general secondary education, and is usually at a level that, while relying on advanced textbooks, also includes some aspects that involve knowledge from the cutting edge of their field of study. CB2: Students are able to apply their knowledge to their work or vocation in a professional manner and possess the competences usually demonstrated through the development and defence of arguments and problem solving within their field of study. CG1: Ability to resolve problems with initiative, creativity decision-making and critical reasoning skills, and to communicate and transmit knowledge, skills and abilities in the Industrial Engineering area. CG9: Knowledge and capacity to apply computational and experimental tools for analysis and quantification of mechanical engineering problems. CE6: Applied knowledge of the fundamentals of fluid mechanical systems and machines.
Description of contents: programme
CHAPTER 1. Summary of the conservation equations in integral and differential form. Initial and boundary conditions. CHAPTER 2. Unidirectional motion. Steady and unsteady flows. Quasi-steady flows. CHAPTER 3. Lubrication theory. Flow in slender channels and thin films dominated by viscous forces. The Reynolds equation. Applications. CHAPTER 4. Flow at high Reynolds numbers. Internal and external ideal flow. Compressible flow. CHAPTER 5. Boundary layer theory. Separation. Integral methods.
Learning activities and methodology
The teaching methodology will incluye: 1. Lectures: The students will be provided with lecture notes and recommended bibliography. 2. Problem solving sessions, related with the course topics. 3. Homework problems aiming at student self-evaluation. 4. Development and interactive presentation of guided works, including four lab session as direct application of theory.
Assessment System
  • % end-of-term-examination/test 60
  • % of continuous assessment (assigments, laboratory, practicals...) 40

Calendar of Continuous assessment


Extraordinary call: regulations
Basic Bibliography
  • A. Crespo y J. Hernández. Problemas de mecánica de fluidos y máquinas hidráulicas. Cuadernos de la UNED. 1996
  • Antonio Crespo Martínez. Mecánica de Fluidos. Thomson. 2006
  • D. J. Acheson. Elementary fluid dynamics. 1990. Clarendon Press
  • J. H. Spurk. Fluid mechanics: Problems and Solutions. Springer Verlag. 1997
  • J.M. Gordillo, G. Riboux, J.M. Fernández. Introducción a la mecánica de fluidos. Paraninfo. 2017
  • M. Vera, I. Iglesias, A.L. Sánchez y C. Martínez. Igeniería Fluidomecánica. Paraninfo. 2012

The course syllabus may change due academic events or other reasons.